CUBE User Document

why cube [image: image45.png]

CUBE
(Small-C)
[image: image49.emf]Start

Do Stuff

Are we done?

No

Continue with

other things

Yes

Done

User Document

Date last modified: May 25, 2006
Author: Daniel S. Kim

Blank Page

Table of Content
71.
INTRODUCTION

72.
PURPOSE

83.
SCOPE

84.
IDE/SATA PCI controller supported

85.
Major Features Supported (Key features)

86.
REQUIREMENT

96.1.
UDMA:

117.
Setup

128.
Language Syntax (Small-C)

128.1.
RESERVED and KEY WORDs

128.2.
Variables, Constants, Operations, and Expressions

128.2.1.
Identifier Names

138.2.2.
Reserved Identifiers

138.2.3.
Data Types

138.2.4.
Declaration

14
Global declaration

14
Local declaration

158.2.5.
Variable Initializations

158.2.6.
Operators

15
Arithmetic Operators

16
Relation and Logical Operations

17
Bitwise Operators

17
Assignment statements

188.2.7.
Precedence and Order of Evaluation

188.2.8.
Expression & Statement

188.3.
Program Control Statements

208.3.1.
IF Statement

208.3.1.1.
IF

208.3.1.2.
IF-ELSE

208.3.1.3.
Nested IF Statement

218.3.2.
SWITCH Statement

228.3.3.
WHILE Statement

228.3.4.
 DO-WHILE Statement

228.3.5.
FOR Statement

248.4.
Function

248.4.1.
Pre-Defined Function

248.4.2.
User Defined Function

258.5.
Pre-processor (#include & #define)

258.5.1.
#include

258.5.2.
#define

259.
WCUBE

259.1.
Overview

269.2.
Features

289.3.
Device Configuration

319.4.
Text Editor Window/Main Window

319.4.1.
Overview

329.4.2.
The Interface

359.5.
The Command Line

359.5.1.
Overview

359.5.2.
The Interface

379.6.
Buffer Editor

379.6.1.
Overview

389.6.2.
The Interface

409.7.
Command History

419.8.
Disk Status

419.9.
Disk Info

429.10.
Flags

439.11.
Macros

449.12.
Notes on Compatibility Mode

469.13.
Known Issues and Notes

4710.
The CUBE

4810.1.
CUBE.INI file

4910.2.
Macro support

5110.3.
CUBE Built-in/Predefined Functions and Variables

5110.3.1.
Predefined Variables

5210.3.2.
Command-line Commands

5310.3.3.
Console: Function Keys

5310.3.4.
Edit

5510.3.5.
Help

5610.3.6.
Console: Basic I/O Functions

5710.3.7.
Console: Display Functions

5810.3.8.
Run-time Control Flag Switch

5910.3.9.
Trace/Debug functions

6010.3.10.
Buffer functions

6110.3.10.1.
Bedit

6510.3.11.
Power Control Functions

6610.3.11.1.
ATX Power Control Via Parallel Port (PWR_CONTROL = 1)

6610.3.12.
PCI functions

6710.3.13.
Memory Mapped IO

6810.3.14.
Other & Date/ Time

6910.3.15.
Legacy Command Tag-Queue

7010.3.16.
Native Command Queuing

7210.3.17.
Drive Commands

7710.3.18.
Drive Commands (Samsung VU Commands)

8010.3.19.
MISC commands (Math,Test….)

8010.3.20.
Command compatibility between Gemini and Cube

8110.4.
Using CUBE

8210.4.1.
Setting-up test environment by selecting the controller

8410.4.2.
CUBE Test Script Examples

8410.4.2.1.
Sequential Seek Time Measurement:

8510.4.2.2.
Random Seek Time Measurement:

8610.4.2.3.
Do Sequential DMA Write/Read:

8710.4.2.4.
Do Sequential UDMA Write/Read:

8810.4.2.5.
Legacy Command Queuing:

8811.
VTOOL

8811.1.
Overview

9211.2.
Configuration

REVISION HISTORY

	Rev
	Date
	By
	Comments

	Alpha
	04/20/2004
	Daniel S. Kim
	

	1.00
	11/29/04
	Nan K. Hall
	

	2.00
	01/28/2005
	Derrick Chu
	

	2.01
	02/11/2005
	Daniel S. Kim
	Update Small-c changes

	2.02
	01/27/2006
	Nan K. Hall
	

	2.03
	05/25/2006
	Nan K. Hall
	Adding file commands

1. INTRODUCTION

This documentation lays out the “Small-C” language definition.

Small-C is developed to serve as a generic test language for Samsung. Small-C has three major parts:

· Lexical Analyzer (or, tokenizer)

· Parser (Syntax analyzer based on Small-C grammar)

· Code generator

Of these three, Lexical Analyzer and Parser is a generic Small-C compiler components. The Code Generator in other hand is micro-processor specific. At the time of this write-up, the code we are generating is based on CUBE virtual – for Cube related topics, please refer to section 7.
In short, Small-C is a “C”-like language with some of the C features/syntaxes removed. Some of the key “C” features/syntaxes you will NOT see in “Small-C” are:

· being able to define structures

· enumerations

· pointers and pointer operations

· variable initialization as it is being defined

· ellipsis

In this documentation, I’ll attempt to describe the follow:

· Reserved words

· Language feature and syntax

· Small-C usage (inputs and outputs)

2. PURPOSE

This document serves as a reference for those who require to write Small-C codes (script), the syntax and the grammar.
3. SCOPE

This document is intended for the programmers developing Small-C based test codes. For those who are doing a Small-C programming can skip the first few sections and move right into the language syntax section.
You’ll find 5 major sections in this document:
1. Small-C grammer/syntax

2. Cube (DOS version)

3. WCube (Windows version)

4. Command set

5. VTool (embedded in WCube)

4. IDE/SATA PCI controller supported

· All on-board PCI chipset should work in Compatible mode (some may also work in Native mode)

· VIA, SiS, NVidia (Compat mode)
· ICH4/5 systems (Compat & Native mode – BIOS configured)

· Promise 100Tx2, 133Tx2 (Native mode)

· Promise 33, 66, 100 (Native mode)
· Si3124 – (to support NCQ)
· Special note on Si3124 Driver:

· *** When an error is detected during the drive command execution, the driver will clear the interrupt, then issue a reset to the card to get the card into a known good state. This will be done for the given channel only *** (for more info on this, see Si3124 technical document). An example of this situation is when an invalid command is issued to the drive.

5. Major Features Supported (Key features)

· UDMA

· Stream command set (including DMA)

· Legacy command queuing (see sample script in Appendix section)

· Command History

· Advanced scripting (Small-C)

· Console functions for user defined screen (user can control the console screen)

· Command execution time measurement to microsecond accuracy

· Macro support

· PCI & related built in function support

· etc…
6. REQUIREMENT
· Hardware:
· PC (Pentium with 8meg or more memory)

· Storage device (Floppy or resident HDD) – to store the program
· HDD Controller

· On-board PCI chipset (IDE/SATA controller) supported

· All onboard PCI chipset should work in Compatible mode (some may also work Native mode)

· Tested PCI Chipsets

· VIA

· SiS

· NVidia

· Intel (ICH4 / ICH5) – also can run in native mode
· Promise PATA controller:

· U33 (not tested)
· U66 (not tested)
· U100 - TESTED
· U133 - TESTED
· Optional:

· Power control

· Samsung ISA Power control board

· ATX power supply with Parallel port connection

UDMA:

· Drive settings and info:

To see/verify that a particular udma mode has been set use the id command (id 1). This will display various information about the drive, including the udma mode of the drive. Near the bottom of the information you will see the udma mode:

 CMD Defa[87]: 0x4003

Ultra DMA[88]: 0x7F

 SCT CMD Supp : 0x0

To interpret the "Ultra DMA[88]" line, you need to understand that the displayed value is two bytes, any leading zeros are not displayed. So in the above case, the value we ought to see it as is 0x007F. The left byte (0x00) represents the udma mode that is set, and the right byte (0x7F) is what the drive supports.

To understand these values, we must convert the number into binary. To see what udma mode the drive supports we convert the right byte. Converting 0x7F to binary we get 01111111b. Label the bits right to left from zero (0) to seven (7). For each bit set represents that that udma mode is supported. So the right most bit at position zero (0) means udma mode 0 is support, one bit to the left at position one (1) means udma mode 1 is supported, and so on a so forth.

Similarly we do the same for the left byte to see what udma mode is currently set. Converting 0x00 to binary we get 00000000b, so we see that no udma mode is set.

Here is another example. Say we do an "id 1" and we see:

Ultra DMA[88]: 0x43F

We convert the right byte to binary, 0x3F = 00111111b. This means that all only udma modes 5 to 0 are supported. And if we conver the left byte to binary, 0x04 = 00000100b, we see that the drive is currently operating in udma mode 2.

· How to set UDMA mode:

By default, the drive will be set to no dma mode. However, if the drive is plugged in while the system is booting, the drive will automatically be set to the highest DMA mode possible.

To set udma mode, you use the set features command (setf). setf takes a two byte argument. It is simplest to input the argument as a hexadecimal number as you will see why.

The generic command to set udma is:

setf(0x4?03)

where the question mark (?) represents the mode. So to set udma mode 4 you type:

setf(0x4403)

The left byte (0x4?) represents that you wish to set udma mode and which mode; the right byte (0x03) represents that you wish to set the transfer mode.

So the left four-? (0x4?) represents udma setting udma with the question mark signifying which mode. The right zero-three (0x03) represents setting the transfer mode.

If you attempt to set the drive to an invalid/non-supported udma mode, the drive will report an error. If you are unsure the set features command went through, type "id 1" and see what udma mode the drive is set at.

For more information regarding the set features command, refer to the ATA command spec.

· Limitations:

For (at least) Promise cards, if a drive is ever disconnected and reconnected, it is imperative that you set dma mode using the setf() command before issuing a dma command. Failure to do so may lead to system hang/freeze.

Additionally, for Promise cards, UDMA mode 5 and 6 are supported, with restrictions. To get the modes to work, you must have the drive plugged in while the system is booting. If no drive is connected at boot up and you try to set udma mode 5 or 6, you may recieve CRC errors. Once the system has booted, you may disconnect and reconnect a different drive if you wish, provided you set the udma mode again.

· Software:

· Latest CUBE.EXE

· Driver file (*.drv)

· INT_ICH.DRV for ICH 4 or 5 (Native or Compat mode – BIOS controlled)
· PRO_IDE.DRV for Promise U33/66/100/133 (Native mode)
· Other on-board chipset (Compat mode)
· TNT runtime library

· OS (Dos)

· Optional: Text Editor

7. Setup
8. Language Syntax (Small-C)

This section describes the Small-C language syntax and its usage.
8.1. tc "7.1 Reserved and Key Words" \l 2RESERVED and KEY WORDs
Following are the key and reserved words for Small-C language.

These words can not be used as a variable name in script files.

The following are Small-C generic reserved words

· break

· case

· char

· continue

· default

· do

· else

· float

· for

· goto

· if

· int

· return

· switch

· void

· while"

8.2. tc "7.2 Variables, Constants, Operations, and Expressions" \l 2Variables, Constants, Operations, and Expressions
Variables and constants are manipulated by operators to form expressions. These are the most basic elements of Small-C language. This section will closely examine each.

8.2.1. tc "7.2.1 Identifier Names" \l 3Identifier Names
In Small-C, the names that are used to reference variables and labels are known as identifiers. The length of an identifier in Small-C can vary from one to several characters. In all cases the first character must be a letter, and subsequent characters must be either letters, numbers, or underscore. Here are some examples of correct and incorrect identifier names.

	Correct
	Incorrect

	num
	23num

	myid23
	myid?23

	my_ident
	my_ident?

	my_float
	my_float@

	my_str
	my_str#

The length of identifier is limited up to 200 characters.

There are two types of identifiers, user defined and reserved (Machine dependent/specific). Reserved identifiers are the variable names that are predefined for a machine that can be accessed by script file.

example:

void main(void)

{

int total;

// declare a variable of int

total = 1;

return;

}
8.2.2. tc "7.2.1 Identifier Names" \l 3tc "7.2.2 Reserved Identifiers" \l 3Reserved Identifiers
For the reserved identifier, see section 7.
8.2.3. Data tc "7.2.3 Types" \l 3Types
In Small-C, there are three data types that are supported, and they are as follows:

	Type
	Num of bytes
	Comment

	char
	1
	Capable of holding one character

	int
	4
	signed integer

	float
	4
	signed single-precision floating point number

8.2.4. tc "7.2.3 Types" \l 3Declaration
All variables must be declared before use. A declaration specifies a type, and is followed by a list of one or more variables of that type.

Example:

char

mychar;

// declare mychar

float

taxRate, total;
// Declare taxRate & total

Declaration can be either GLOBAL or LOCAL

You can not re-declare Reserved or Key words.

· tc "7.2.3 Types" \l 3tc "7.2.4.1 Global Declaration" \l 4Global declaration

When variable or other identifiers are declare as global, these identifiers will be in symbol table throughout the execution of the program.

Program example:

int gMyGlobalVar;
// declare a global variable

void foo(void)

{

int myLocalVar;
// declare a local variable

myLocalVar = 1;
// initialize local variable

gMyGlobalVar = 2; // Set global variable gMyGlobalVar to 2

return;

// When we leave, myLocalVar will be lost

// But, gMyGlobalVar will be alive

}

void main(void)

{

foo();

// Declare a local variable

return;

// When we leave, gMyGlobalVar will be
//
lost, too

}

· tc "7.2.4.2 Local Declaration" \l 4Local declaration

Unlike Global declaration, variables declared as local will be removed from the symbol table once the routine that declared the variable(s) exits.

Program example:
int gMyGlobalVar;
// declare a global variable

void foo(void)

{

int myLocalVar;
// declare a local variable

myLocalVar = 1;
// initialize local variable

gMyGlobalVar = 2; // Set global variable gMyGlobalVar to 2

return;

// When we leave, myLocalVar will be lost

// But, gMyGlobalVar will be alive

}

void main(void)

{

foo();

// Declare a local variable

return;

// When we leave, gMyGlobalVar will be
//
lost, too

}

8.2.5. tc "7.2.6 Variable Initializations" \l 3Variable Initializations

In Small-C, as soon as variable is declared, it will be initialized to 0. Therefore, programmer does not have to initialize the variables (need to initialize if initialization value is other then 0).

Program example:

void main(void)

{

int age;

// declare a variable

age = 17;

// Initialize age to value 17

return;

}
· Identifier (reference): a named memory location

· Variable: an identifier that C / C++ programs use to store values needed by your program.

· Storage

· You create them

· Values can change

· Naming convention

· Consists of letters, numerical digits, and the underscore character.

· Can not start with a digit

· Can not use a Small-C keywords

· Should give your variables meaningful names

8.2.6. Operators
An operator is a symbol that tells the compiler that you want to perform specific mathematical or logical manipulations. Small-C, just like C, has three general classes of operators: arithmetic, relational and logical, and bitwise.

· tc "7.2.7.1 Arithmetic Operators" \l 4Arithmetic Operators

Table 6-1 lists the binary arithmetic operators allowed in Small-C. The operators -, +, *, and / work the same way in Small-C as they do in most other computer languages.

Operator
Action

-

Subtraction, also unary minus

+

Addition

*

Multiplication

/

Division

%

Modular division

Table 6-1
Arithmetic Operators

Integer division truncates any fractional part.

Example:

x = 3 / 2;

Above operation will result in 1.

Modulus operator, ‘%’, produces the remainder.

Example:

x = 5 % 3;

Above operation will result in 2

Modulus operator can only be applied to integers; cannot be applied to floating number.

· tc "7.2.7.2 Relation and Logical Operations" \l 4Relation and Logical Operations

In the term relational operator the word relation refers to the relationships that values can have with one another. In the term logical operator the word logical refers to the ways these relationships can be connected together. Because the relational and logical operators often work together, they will be discussed together here. The key to the concepts that underlie relational and logical operators are the ideas true and false.
The table 6-2 shows the relational and logical operators.

Relational Operators

Operator

Action

>

Greater than

>=

Greater than or equal

<

Less than

<=

Less than or equal

==

Equal

!=

Not equal

Logical operators

Operator

Action

&&

and

||

or

!

not --- not working yet

~

not --- nor working yet

Table 6-2
Relational and Logical Operators

· tc "7.2.7.3 Bitwise Operators" \l 4Bitwise Operators

The term bitwise operation refers to the shifting of the actual bits. Table 12-3 lists the operators that apply to bitwise operators.

Operator

Action

&

and

|

or

^

exclusive or --- not working yet

~

not

>>

shift right

<<

shift left

Table 7-3
The Bitwise Operators

· tc "7.2.5 Assignment Statements" \l 3Assignment statements

The general form of the assignment statement is

variable_name = expression;

where expression may be as simple as a single constant or as complex as a combination of variables, operators and constants. Like C, Small-C uses a single equal sign to indicate assignment. The target, or left part of the assignment, must be a variable and not a constant.

8.2.7. tc "7.2.5 Assignment Statements" \l 3Precedence and Order of Evaluation
The table below lists the rules for precedence and associatively of all operators that are supported by Small-C.
	Operator
	Associativity

	() []
	left to right

	! ~ ++ --
	right to left

	* / %
	left to right

	+ -
	left to right

	<< >>
	left to right

	< <= > >==
	left to right

	== !=
	left to right

	& |
	left to right

	^
	left to right

	&& ||
	left to right

	=
	right to left

	
	

8.2.8. tc "7.2.3 Types" \l 3Expression & Statement
An expression combines variables, constants and operators.

Evaluation of an expression results in a value

Sum = 2 + (3 + num2) * 3;

A statement specifies an action to be carried out by the computer (simple statements must end with a semicolon)
8.3. tc "7.3 Program Control Statements" \l 2Program Control Statements
This section discusses the various program control statements. These includes the conditional statements

· if

· switch

, the looping construct
· while

· do-while

· for

, and the statements
· break

· continue

· goto

These statements control the flow of the program.

8.3.1. tc "7.2.3 Types" \l 3IF Statement

8.3.1.1. tc "7.2.3 Types" \l 3IF
Syntax:

if (expression)

statement;

Example:

if (age < 5)

put(“Baby”);

if (salary > 40000 || salary < 100000)

{

printf(“mid class family\n”);

printf(“can not buy home in bay area\n”);

}

8.3.1.2. tc "7.2.3 Types" \l 3IF-ELSE
Syntax:

 if (expression)

 statement;

 else

 statement

Example:

if (age < 18)

printf(“you are still a kid\n”);

else

printf(“you are on your own\n”);

if (salary < 100000)

{

 printf(“you are poor\n”);

 printf(“you need to make more\n”);

}

else

{

 printf(“ you still might be poor\n”);

 printf(“maybe you can buy a run down home\n”);

}

8.3.1.3. tc "7.2.3 Types" \l 3tc "7.2.3 Types" \l 3Nested IF Statement
Syntax:

if (condition)

statement

else if (condition)

statement

else

statement

8.3.2. tc "7.2.3 Types" \l 3SWITCH Statement

Syntax:

switch (expression)

{

 case constant: statement(s);

 case constant: statement(s);

 default:
statement(s);

}
Example:

char selection;
selection = 2;
switch (selection)

{

 case 0: printf(”Num is ZERO”); break;

 case 1: printf(”Num is ONE”); break;

 case 2: printf(“Num is TWO”); break;

 default: printf(“Bad data”);

}

8.3.3. tc "7.2.3 Types" \l 3WHILE Statement

[image: image1.png]

Syntax:

while (expression)

Statement

OR
while (expression)
{

Statement(s);

}

8.3.4. [image: image45.png] DO-WHILE Statement

Syntax:

do

{

statement(s);

} while(expression)

8.3.5. FOR Statement

Syntax:

for (exp1; exp2; exp3)

 statement;

OR

for (exp1; exp2; exp3)
{

 statement(s);

}
exp1 (optional): initialization expression

exp2 (optional): conditional expression (test)

exp3 (optional): loop expression

8.4. Function
Small-C grammar, like standard C/C++, allows function implementation. There are two types of functions:

1. Predefined functions

Functions that are predefined by the Virtual machine library.

2. User defined functions

Functions that are created by the user (written in Small-C)

Function is equivalent to a subroutine or function in other languages – or procedure. A function provides a convenient way to encapsulate some process (statements) in a black box, which can then be used without worrying about its inner functionality.

8.4.1. Pre-Defined Function

For the listing of Predefined functions, please refer to Section 7.

8.4.2. User Defined Function
To write and use user defined function(s), the programmer must do the following

1. Declare

2. Implement

3. Use

· Declare

Syntax:

<return type> <function name>(<parameters>)

· Implementation

Syntax:

<return type><function name> (<parameters>)

{

<code>

return <return type>

}

Example:

int addTwoNum(int, int);

// Declare
void main(void)

// Main function
{

int sum;

sum = addTwoNum(2, 3);

// Use (make a call)
printf(”Sum = %d”, sum);

}

int addTwoNum(int n1, int2)
// Implement
{

int num;

num = n1 + n2;

return num;

}

For more on Function, please refer to C/C++ documentation
8.5. Pre-processor (#include & #define)

8.5.1. #include

Syntax:

#include “filename”
8.5.2. #define

 Syntax:

#define MAX_NUM_OF_READS 1000
9. WCUBE
9.1. Overview
This application is designed to provide a user interface to CUBE in a Windows environment. Since this tool is designed to manipulate scripts for execution on the drive, it only makes sense to emulate a user interface similar to other integrated compilers such as Visual C++. As a result the application contains a text editor with additional components, specific to CUBE functionality.

[image: image2.png]1

[Hle Edt view window Help IDE Devices VIOOL

1G] B = #
Read | wite | Compare |

2la 2 | el

00000000 00

OVERWRITE 0 o0

Ml CMD | BUF | HIST | STAT
c=0
h=0
s=0
1=0
counTS
TOTAL SOF
SEEK 000000000 0000C
READ 000000000 0000C
WRTTE___nnnannnnn_nnnne
st|er [emd fe |5 (s
Lf fﬂ_l

il

e

vetbose
disk
tag
wace
et
sba
bemp
emist

emdime

~=lolx|
=181x]

INFO VTOOL | FLAGS | MAC

Ready

int, Colt pos

9.2. Features
All windows aside from the text editor can be free floating or docked. All windows can be docked on any side to the main window or other docked windows. This allows for the flexibility of user preference in the appearance of the application. Each window, including the main window, remembers its position and visibility when the application is closed. So each time the application is reopened, the same interface will be seen.

Note: Since windows can be docked on any side, there may be difficulties in docking windows in certain positions as they may have a tendency to snap to the undesired edges. Watch the outline of the window when dragging to dock.
The Buffer Editor, Disk Status, and Command History are all free floating while the Command Line is still docked:

[image: image3.png][=lolx]|
[Ele Edt Vew Window Hep IDEDevees VTOOL NE
=10 CMD | BUF | HIST | STAl

[Fead [wite | Compore]

movEwEDITLL | L 2| 0P
®-MICDATA 00000000 00
- VISUAL TEST

(OVERWRITE 0 00

1D | CFG [MDIR
Identify Data - B
Nodel: SANSUNG SP2004C
Serial Nun: P124SR0334
Firnvare Rev: VH100-10 =
K| f

Ready int, Colt pos

Additionally, the windows maybe closed/hidden so there is more room for other windows. There are three ways to toggle the visibility of the various window. You can use the individual close button on the window, use the toggle buttons on the top, or use the file menu.

[image: image4.png]=lolx|
=181x]

|44 % & 8| 470 7% /i "TMD BUF HIST STAT INFO VTOUL,

Command Hstory.
Status Dislay.
DiskiInfo.
Togol Bar

|

L

Show or hids Editor Tab Bar [, ot [~ pos

As you can see, the file menu allows you to hide more windows than the toggle bar. If you really need the space, then they can be closed. However, they are not normally closed since they take minimal space and provide quicker access to various parts of the application. Once a window is hidden, reselect from the toggle bar or the file menu to make it reappear.

All toolbar icons and file menu selections have captions assigned to them. If confused about what a particular command may do, hold the mouse over the item and the status bar will display a more detailed explanation about its function.

Device Configuration
In the menu bar there is an pull down menu for IDE Devices. Similar to the command “setha”, this window allows you to select which device you wish to use.

[image: image5.png][1] WCUBE - v0.2.7 - [New2] ~=lolx|
[e Edt View window Helo | I0E Deyioss-¥I00—___ =181

3 70 70| CMD BUF HIST STAT INFO VIOOL
[mewt || BT newz

Trcmae et

Confige
Reduce Widows Overhead /|

[int, Col 1 [pos

A list of the devices detected on your system will be displayed. Selecting one of the devices will load the appropriate drivers and register the device for usage on with executable commands. Additionally, there are the options to configure and reduce Windows overhead.

Note: Windows requires an inf installed for each device on the system before you may interact with it. If, in the Device Manager, there is an exclamation point next to a device you wish you use in WCUBE, it will not show up until an inf has been installed and the exclamation point is gone.

The configure option will display a new dialog box which will allow you to hide or show devices on your system.

[image: image6.png]Configure IDE Devices
Enable/Disable Display of IDE Device
Bus 0 Clot 1f Intel ATA(82801A%
ST inbzsver)

You will see a similar listing of devices in this window, however each device has a check box next to it. By unchecking the box, the device will not appear in the menu. Additionally, you will be unable to select that device from the command line either. This helps to remove devices you do not wish to test to prevent accidental data loss or damage, such as the OS’s resident hard drive.

Since Windows requires more resources, there is inherent overhead using Windows versus DOS. Checking the “Reduce Windows Overhead” will attempt to minimize this overhead. This will not reduce drive execution time, just the time between each command. Of course, as more system resources are dedicated to WCUBE, other applications may feel more sluggish with this on than without. This option will not affect system performance when no scripts/commands are running.
Note: This option may not work on some systems, particularly Windows 98 machines. If you notice command execution times taking longer than they should with this option, please disable it.
When selecting a device, the name of the window will change. When having multiple WCUBE windows open, you can more easily distinguish which WCUBE belongs to which host adapter. Remember, you can only one WCUBE can select each host adapter.

[image: image7.png][Newl) EEIES
T =Tk IDE Devices VTOOL _15]x]

@k SO O[# R & 6] 4% % %] cMD BUF HIST STAT INFO VTOOL|

[ECl
T 3

Ly o

Ready g, Calt [~ fpos o o

i
s

All of these settings are saved when the application is closed so reselecting and configuring of devices is unnecessary between application restarts.
Text Editor Window/Main Window

9.2.1. Overview
At the root of the application is the text editor. One could think of the application as a text editor with extra windows. The text editor provides an interface to load and manipulate a script before compilation and execution on the virtual machine. The text editor is very similar to Notepad, but also integrates several other features.
[image: image8.png][2] WCUBE

b (SAMSUNG SP1213N 5N100-19
[Fie Edit Wiew Window Help IDE Devies YTOOL

vew1]

=lolx|

=181

IR DE[S[OO[M RS [4% % %[CMD BUF HIST STAT
[hewt

Ready

[En [~ pos

9.2.2. The Interface

Since the application is the text editor, most of the toolbar buttons and file menu commands only pertain to the text editor. The text editor supports multiple open script files and provides a tab bar for easy navigation between the various each open script. In its maximized state, you can encompass the entire window with a single script file, switching between each file by clicking its tab. Additionally, there is support for non-maximized viewing, so multiple scripts can be viewed side by side.

At the top there is the file menu and toolbar.

[image: image9.png][2] WCUBE - v1.0.0b (SAMSUNG 5P1213N SN100-19) - [New1] ol x|

VEW Windon Feh IDE Devices _VIOOL ;uﬂ File Menu

%g’ T 0= O M i 0h] 40 w2 CMD BUF HIST STAT [Tool Bar
Tewl Tab Bar

e 1, Col 1 [bos [[T > Status Bar

Both provide methods for creating new, opening, and saving files as well as undoing, redoing, cutting, copying and pasting text for each script. Additionally, in the toolbar, there is support for flagging of lines. At the bottom, there is a status bar which provides various information such as the current cursor position, text mode, and key status (num lock, caps lock, etc).

The tabs also provide some repeated functionality. By right clicking on the tab, you can access the same functionality found in the file menu and toolbar for that particular script (right). Right clicking on the bar will produce a different list of options (left).

[image: image10.png]Active View Tab

Close
Save

!:l:l,

Culss

Saveds

& pin b
Rl

[image: image11.png]Open File Tabs Bar

V' OpenFie Tabs

] Full Screen

B Cose Al

& Savest

2 New Windows
Arange loons

By Cascade Windows

B Tile Horzontally

0 Tieeticaly

S Nest Window
B Previus Window

B windows

In addition to basic text entry, the editor supports syntax highlighting, automatic indenting, and flagging/bookmarking of lines.

[image: image12.png][2] WCUBE - ¥1.0.0b (SAMSUNG SP1213N 5N100-19) - [New1] -[ol x|
[J Fle Edit View Window Help IDEDevices VIOOL

=181
R EOE[2[QO[#M R S] 4% %] CMD BUF HIST STAT
[hewt

#oonpiler comnands
7Dauble slash comnenting

(OFlag

void main()

int keyword identification

“Quotes

<b} flag using ctrl+l
1234; numbers
029876 hex

b

/* Multi-line comnenting
o

(@ flag using ctrl+d

Ready

i, colts [pos T

Syntax highlighting - Most basic C commands are recognized by the editor and will automatically change colors. Such syntax includes: compiler commands (#), quotations (“), numbers (0-9), comments (both // and /**/) and keywords (int, main, char, etc).

Automatic indenting – Like other programming orientated text editors, this editor will automatically indent on a carriage return if the previous line was indented.

Note: the editor will *only* indent if the previous line has been indented (first indent is manually put)

Flagging lines -And finally, one can flag various lines for quick access. This can be done by selecting the flag button in the toolbar or pressing ctrl+<#> where <#> is a number between 0 and 9. This will create a little bubble in the left margin. By selecting “next flag” or “previous flag” in the toolbar, you can jump to the next or previous flag set based upon your current cursor location. If the flag was set by ctrl+<#> you can also press alt+<#> to jump to that specific flag.

The Command Line

9.2.3. Overview
The command is modeled from the DOS command shell. It allows the user to execute small-c commands directly or execute some limited commands within the application that pertain to script editing. [image: image13.png]F4 - YTOOL | F3 — GLOBAL VARS

9.2.4. The Interface
Like typical shell commands are typed in and feedback regarding the command is reported back.
[image: image14.png]Command
Line

The above image shows the command line window. At the bottom is the command line itself. This is the main interface to the CUBE compiler and virtual machine. Any commands which are understood by the CUBE compiler can be entered at the prompt.

There are two types of commands, built-in commands, and CUBE commands. Although the built-in commands have very similar, if not exact, counterparts in the DOS CUBE, the underlying structure is different such that they need to be specially written for WCUBE. All commands which do not fall into the built-in commands are assumed to be CUBE commands and automatically compiled.

Built-in Commands:

	Command
	Description

	new
	The application will open a new, empty script file for editing. No file will be created until explicitly told to save

	load
	The application will open the standard Windows load dialog for you to select a file to open in the text editor

	load <filename>
	The application will attempt to open the file with the specified filename in the text editor

	loadm <filename>
	Load the file as a macro

	listm
	Lists all the macros detected

	save
	The application will save the currently selected text editor window

	run
	The application will run the contents of the currently selected editor window

	exit
	Exit the application. Will prompt to save any scripts that have been modified.

	cls
	Clear all text from the command line

	*
	Whatever cannot be understood will be assumed to be a small-c script and sent to the compiler/virtual machine.

Note: the code will be automatically wrapped in “void main() {}”

Since a press of the enter key will start the execution of a command, the command line only accepts single line commands. For multi-lined commands, use the script editor. Please note for CUBE commands, there is no need to add “void main() {}”, the text will be automatically encapsulated so they can be properly executed.

Like a DOS shell, whenever a command is entered, it is displayed along with any output that may have occurred as a result of the command. Typically an “ok” will display in the window to indicate the completion of the command. Additionally, the prompt along with a blinking cursor will appear so another command may be entered.

The command line also support command history. Any command typed during the current session can be recalled using the down and up arrow keys. The up key will cycle through earlier commands while the down key will cycle through later commands. Once you reach your desired command, you may edit it, or keep as is, for execution again.

While a command is processing, the input will disappear. This will prevent multiple commands being executed on a drive at the same time. Any other part of the application may be used while a command is processing. That is the beauty of Windows and multithreaded applications. To cancel a command, press “ESC” which will attempt to halt any commands currently being executed.

At the top is the CWin (console window). By default it is not shown an the command line encompasses the entire window. It is another place for output to be displayed per the user requests. The display window is attached to the command line window and cannot be detached. Additionally it cannot be resized except through the commands defined by CUBE. The All supported command, including creating and resizing the window, are described in the CUBE documentation.

Buffer Editor

9.2.5. Overview
The buffer editor is designed to provide a method to view and alter the contents of the disk buffer in its raw format.
[image: image15.png]RITE

9.2.6. The Interface
This window provides manipulation of a specified buffer. Contained are three tabs to select between buffers, read buffer, write buffer and compare. For each buffer tab, there are three fields provided, from left to right: address field, hex field, and ASCII field. Any field is editable and changes in one will reflect in the others.

[image: image16.png]Hexadecimal

[oER¥|S 03
BE[o222 p8) 1e
CF[ALATAARCEREETTTT

00000640]|40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F|@ABCDEFGHTJKLMNO

The address field will display the range of addresses, in hexadecimal, viewed in the other two fields. Also, the address field provides quick access to a particular address. Just type in the address in hexadecimal and press enter, the buffer will jump to the specified address, if it is valid. Press escape or click to cancel out. While manipulating the data in the other fields, the address field will highlight the address of the data being selected.

The hex field displays the contents of the buffer in hexadecimal and likewise the ASCII field displays it in ASCII. By default the editor is in overwrite mode. Any thing that is typed in will overwrite the existing values. To switch to insert mode, press insert. This will shift all data after cursor to the right and inserting the new value. Additionally, the delete be available, which will shift all data after the cursor to the right

Note: When inserting, the last byte will be “pushed out”. Also, when deleting, the last byte will be shifted in with value 0x00.

At the top, there is toolbar to provide additional functionality other than insert and overwrite. The eight buttons are (left to right) Search, Fill, Commit, Revert/Refresh, Clear, Compare, Copy, and Configure.

[image: image17.png]B HOC @R s

Search button – displays a dialog enter either a hex or an ASCII value. This value will be searched for within the entire buffer.

[image: image18.png]@ ST € Hen Cancel

Fill button – display a similar dialog as the search button. This will to fill the entire buffer with the specified pattern.

Note: When entering hex, the input must be byte aligned, that is, your searches must be multiples of 8 bits wide (i.e. “000A” and “0A” is ok, but “00A” or “A” is not).

Commit button – copies all modifications to the actual buffer. No actual modifications are made to the buffer until the commit button is pushed.

Revert/Refresh button – undoes any changes since last commit and reload the current buffer values into the window. This is useful if any undesirable modifications were made. Also this button can be used to get the current state of the buffer.

Clear – This will clear the buffer of all values, replacing everything with zeros. At the bottom, the status bar displays, from left to right, the mode (insert or overwrite) and the cursor position in both decimal and hexadecimal values.

Compare – This toggles the compare between read and write buffers, highlighting the differences in the buffer you are currently in.

Copy – This will pop up a new window to copy various selections from one destination to the other. The copy range will automatically be filled with the whatever you are selecting.
Warning: Copying large amounts of data from the buffer is not recommended as the process is slow. If you need to dump the entire read/write buffer, use rdump/ wdump, or rsave/wsave commands.
[image: image19.png]; P

~Famating

& Hex © i © Binay

- Destination

© Fie
& Clpboard Biowse.

" ie Bulfer ot conmited)

==

Configure – This will open a window to allow you to customize the appearance of the buffer. The scrollbar range is for making the scroll bar not scroll for the entire buffer. This is useful when you only want to look at 10 blocks of data, and you don’t need the scroll bar to be sensitive for the entire 4000 blocks.

[image: image20.png]- Bytes Per Line
&

Hex Byte Alignment——————————————
C BYTE & WORD C DWORD " GWORD

Serol Bar Range-
131072 Lines (0 for mas)

==

Command History

This is only a window to provide diagnostic information. The window is non editable and displays a history of the command executed on the drive. The contents of the window update automatically.

[image: image21.png]

Disk Status

Similar to the command history, this window is used to provide diagnostic information about the drive. There is interface to the user other than what is displayed.

The window shows what the internal c, h, s, and l are set at. Additionally the # of reads/writes/seeks and corresponding soft and hard errors are reported.

[image: image22.png]=00

COUNTS
TOTAL SOFT HARD
SEEK 000000000 000POODOD DODDDDDOD
READ 000000000 000000000 000000000
WRITE 000000000 000000000 000000000

Disk Info

This window displays information gathered about the drive. It will update whenever the command “id 1” or “config” is issued. These commands gather information from the drive. The window will remember the last “id 1” command issued as well as the last “config” command issued. The output will be the output from “id 1” followed by the output from “config”. If either of these commands have not been issued, their respective areas in the window will remain blank. Click on each tab to switch between each view.
[image: image23.png]© | conia] worm |

Hodel

Serial Num
Firnvare Rev
Major Version
Support 48bit

HazLba
Hex Mul
Capabil
Cur Mul
PIO
PI0
Dith
Dk

Maj Vers|
CHD Supp[
CUD Supp[
CUD Supp[
CUD Enzb[
CMD Enab[
CHD Defal8
Ultra DHA[88]
SCT_CHD Supp
ATA Spec Supp

sl

~ Identify Data —

SAMSUNG SP1213N
P8004TD760

SN100-19

254 (dec)

Addressing lode: *xx Yes %xx

234488395 (0=DFA024B) Capacity: 120.0Gig
0x10

022F00

0s0

02F0 (Min Cycle V/0 Flow Contzal)

0278 (Min Cycle W IORDY Flow Conmtrol)

0x78 (Min Cycle)

0278 (Manufacture Recomnended Multivord cycle)

05FE
023468

0x7F01

024003

02368

023C01

024003

02103F

030

3/4/5/6/7/ (TAG QUEUE NOT Supported)

Flags

This window shows the built in flags in WCUBE. The names are similar to what you would type in at the command line. If the flag is enabled, there will be a check by it, otherwise it will be unchecked. The flag will update in “real-time”; whenever the a flag changes, in a script, command line or mouse click, it will be reflected immediately. All flags can be modified at anytime, even while a script is running with the exception of logfile. To turn on and off the logfile, you must type it in at the commandline or within a script.
[image: image24.png]I locte
¥ faibora
Ik

I e

I vace
I aht
I sba

I~ access
I bomp
I~ et
I~ crdine

Macros

This window lists all the macros in a file whenever a macro file is loaded either through the file menu or “loadm”. This is the same list displayed at load time or when the “listm” command is issued. To run any of the macros, double click on it and the macro will run, as if you had typed “run <macro name>”

[image: image25.png]sl
s
ey
e
i

i

o
Sorarian
e

Notes on Compatibility Mode

NOTE: We are not responsible for any data lost if you accidentally write over your OS drive. If you are using Windows 98, proceed with caution as it is not as stringent as Windows 2000/XP to protect the OS drive. If at any time you receive a message that you must reboot, most likely you have selected an invalid choice. Undo you selection or you risk no longer being able to boot to the drive. Although not recommended, you can run can use the primary port for the OS drive and secondary port for the test drive (or the other way around).
If you are using second channel on the board, if you find you are unable to talk to the drive or a [?] appears instead of [0] in the title bar of WCUBE you need to type DRIVE = 1 (defaulted to DRIVE = 0) then try selecting the host adapter again. This will cause WCUBE to use the second port rather than the first. WCUBE does not remember what port you are using from session to session. It will always default to DRIVE = 0. To remedy this, write a cube.ini which sets DRIVE = 1 then setha <host adapter number>.

Now for installation. You do not need to install the WCUBE drivers to use the motherboard controllers. Instead you need to disable the device in device manager. Go to your Device Manager and find the channel you wish you use:

[image: image26.png]=lolx|

Ble Acion ew tep

«> | @EFg(B]

= B ook
3 Computer
<o Diskdrives
@ Dispay adapters
2 DYDJCD-ROM drves
2 Foppy disk controlers
3. Floppy dk drives
£ IDE ATAIATAP] controlrs
2 Intelr) 280108 Ulra AT Storage Controler 24CB

3 Secondary IDE Charnel
) WCUBE IDE Controler
) WCUBE IDE Controler

5 Keybosrds

) Mice and other pointing devices
Monicors

B Network adapters

. Ports (COMELPT)

A Processors

©, Sound, video and game controlrs

g System devices
£ Universal serisl Bus controlers

Right click on the channel and click Disable. Windows may or may not give you a warning message that this will make the device no longer function. Click yes and the device should appear with a red ‘X’ now. You can now use compatibility/onboard in WCUBE.

[image: image27.png]=lolx|

Fle Acion Vew Hep

«> | @EFg(B]

E B DERRICKCHD
3 Computer

<o Diskdrives

@ Dispay adapters

2 DYDJCD-ROM drves

2 Foppy disk controlers

3. Floppy dk drives

£ IDE ATAIATAP] controlrs
2 Intelr) B2801DE Ulra AT Storage Controler 24CB
2 Prinary IDE Chanel

) WCUBE IDE Controli _Update Driver.

2 weuee 10 Control IR
5 Keybosrds Uninstal
) Mice and other pointing

Monicors
B Network adapters
. Ports (COMELPT)
A Processors
©, Sound, video and game controlrs

g System devices
£ Universal serisl Bus controlers

Scan For hardware changes

Properties

[Piables the selcted devic

[image: image28.png]=lolx|

Ble Acion ew tep

A=A TS 1

= B ook

2 Computer

<o Diskives

2 Display adepters

23 Floppy dik controlers

13 Floppy dis dives

51423 IDE ATA/ATAPL controllrs
3 Intelly) 260108 Ulkra ATA Storage Controller-24CB
2 Prinary DE Charvel

) WCLBE IDE Controller
) WCLEE IDE Controller
Keyboards

) Wice and other pointing devices
Monitars

58 Network adapters
. Ports (COMELPT)

A Processors

©, Sound, video and game controlrs

System devices
Universal Seral Bus cortrolers

Known Issues and Notes
Marvell Bridge Chip:

There is a known bug regarding SATA drives that use the Marvell bridge chip. When executing physical commands, sometimes the drive fails to raise an interrupt at the proper times. As a result, we have implemented a polling mechanism as a work around for this issue. The drivers will poll once every millisecond when a physical command is issued, up to the user defined timeout.

This works in conjunction with the standard interrupt method, and acts as a failsafe if no interrupt is seen even though the drive is ready/waiting for the host to take action.
It should be noted that, for drives that affected by this, each “lost” interrupt (usually one interrupt per block transferred) can add up to ten milliseconds to the overall command time. The command time reported by WCUBE, under these circumstances, is not reliable.
To disable the DRQ polling, and rely only on interrupts, disable the flag “drqpolling” (drqpolling 0).

The CUBE
The CUBE is drive test software which allows the users to interactively test and FA drives.

Some of its key features are:

· Small-C script language

· ATA-7 Command Set (Both Extended & Non-extended commands)

· Support DMA and UDMA

· Support Power Controller Board:

· Supports Samsung ISA Power Control board

· Support Parallel Power control using the ATX power supply

· Advanced Write/Read buffer management

· Feature to trace (command history) – currently, it is configure to trace upto 100 last commands executed (command block / error status / execution time)

· Advanced Execute Timer Clock (execution time clock in microseconds)

· Provides Consol Control commands (user can define and display data on a user defined console window)

· Many other features are available

9.3. CUBE.INI file

Cube, when loaded, will first look for CUBE.INI. This is CUBE initialization file which Cube will execute. If the file does not exist, cube will still load but no initialization will take place. Meaning, the user must set things up manually before drive can be tested.

CUBE.INI file content syntax follows Small-C grammar. The kinds of thing one would do inside the CUBE.INI will be such a setting as setting up the power controller type, PATA or SATA controller to load. Below is a sample CUBE.INI for your reference:

//---

//- By: Daniel
//- Date: 08/08/2003

//-

//- This is the CUBE Initialization file

//-

//- Here, we will scan for controller and

//- set/load driver for the first controller found

//---

void main(void)

{

 scanallpci;

 setha(0);

 PWR_CONTROL=1;

 return;
}
9.4. Macro support

Macro is a prewritten set of instruction that can be called from command line. To utilize this feature, the user must first put together a macro file, load macro file, then call the macro he/she wants to run. There are two commands that must be used when loading and calling of a macro:

· loadm <macro filename>

· ex: loadm mymacro.mac

// file extension can be anything

· to run, type in macro name from the command line
· ex: seektest

Macros will not take in any call parameters. All parameter, argument, passing must be done using the predefined global variables (ex: R0-R19). Also, macros must not return any return types. Therefore, all macro definitions must follow the following syntax:
Syntax:

void
<macroname>
 (void)

Example”

void test1 (void)

{

statement(s);

return;

}

example of macro file:
//---

//- By: Daniel
//- Date: 07/19/2004

//- FileName MyMacro.MAC
//-

//- Macro file demonstration
//-

//---

void mytest(void)

{

id 0;

sk(1,1);

rdmae(1,1);

}
void msg1(void)

{

put(“This is message”); newline;

put(“This is a message”);

}

Above simple example has two macros define, mytest & msg1.
To use these macros, one CUBE is lunch, you’ll do the following:

· loadm mymacro.mac

// load macro file

· msg1

// run’s macro “msg1”
· mytest

// run’s macro “mytest”
9.5. CUBE Built-in/Predefined Functions and Variables
· Command line commands
· Basic IO functions
· Console display functions
· PCI functions
· Drive command functions
· Buffer functions

· Control Flag Switches

9.5.1. Predefined Variables
These variables are predefined and can be accessed by script files.

	Identifier
	Description

	R0 – R19
	Reserved Variable for the users

	VU
	Vendor Unique mode flag (0 == no, 1 == yes)

	DRIVE
	Drive selector (0 == Primary, 1 == secondary)

	SLAVE
	Drive selector (0 == Master, 1 == slave)

	ECC
	ECC byte count (set when Identify command is issued)

	RETRY
	Retry count

	DEVICE_TYPE
	DUT device type (set when Identify command is issued)

 0 == Unknown

1 == PATA

2 == SATA
4 == SDIO

	CMD_TIMEOUT
	Command Timeout value in milliseconds. The default is 10,000. The value can be modified using cmdtimeout(exp) function.

ex: cmdtimeout(123); // timeout value changed to 123milliseconds

	acc
	Accumulator (was added to support Gemini like parameter passing on some VU commands)

	MAX_C
	Max cylinder (set when Identify command is issued)

	MAX_H
	Max head (set when Identify command is issued)

	MAX_S
	Max sector (set when Identify command is issued)

	MAX_LBA
	Max lba (set when Identify command is issued)

	MAX_Z
	Max zone (set when “init” command is issued to drive)

	MAX_PC
	Max Physical Cylinder (set when “init” or “inith” is issued to the drive)

	MAX_PH
	Max Physical Head (set when “init” or “inith” is issued to the drive)

	MAX_PS
	Max Physical Sector (set when “init” or “inith” is issued to the drive)

	MAX_PBA
	Max Physical Block Address (set when “init” or “inith” is issued to the drive)

	MIN_PC
	Minimum Physical Cylinder accessible (set when “init” or “inith” is issued). Any VU command accessing below this cylinder will be rejected.

	c
	Current cylinder addressed (automatically picked up by VU commands, if used)

	h
	Current head addressed (automatically picked up by VU commands, if used)

	s
	Current sector addressed (automatically picked up by VU commands, if used)

	l
	Current lba addressed

	TF_ERROR
	Last error register read (updated when drive cmd is issued or on “rtsk”

	TF_STATUS
TF_SC

TF_SN
	Last status register read (updated when drive cmd is issued or on “rtsk”
Updated when “rtsk” cmd is issued (current register only)
Updated when “rtsk” cmd is issued (current register only)

	RBUF
	Read buffer assigned

	WBUF
	Write buffer assigned

	PCI_BASE
	PCU base address selected (set when setha(HA#) is issued)

	CMD_TIME
	Last command execution time (set when cmdtime 1 is issued)

	PWR_CONTROL
	Power controller type specifier (default is set to 1)

0 == No power controller

1 == Parallel control

2 == Samsung ISA power controller

3 ==

4 == Samsung PCI power controller

	TREAD
	Total read count

	SREAD
	Total read soft error count

	HEREAD
	Total Hard error count

	TWRITE
	Total write

	SWRITE
	Total write soft error

	HEWRITE
	Total write hard error

	TSEEK
	Total seek

	SSEEK
	Total seek soft error

	HESEEK
	Total seek hard error

	ERRORHALT
	To Halt the test on user input error (Error register)

erhlt must be set to 1

	NOTDONE
	Used for ADDH, ADDC, when max cylinder is reached for all heads this variable is cleared to zero.

9.5.2. Command-line Commands
These commands are valid only when used from the console prompt. These commands are not part of the Small-C language. Therefore, user can not include these commands inside the Small-C program.
	function syntax
	parameter / description
	requirement

	

	cls
	Clear console window content
	NA

	load <filename>
	filename: name of the file to load
	NA

	loadm <macro filename>
	Macro filename: name of the file to load
	

	run or r
	Run script
	Script must be loaded using the “load” cmd

	run <mac func> or
r <mac func>
	Run macro function
	Macro file must have been loaded and the macro must exist

	edit <filename>
	Edits a file: If filename exists it loads the file to be edited. If not opens a new file
	load editor and edit currently loaded script. If no file loaded, open an empty file

	exit
	terminate CUBE
	

9.5.3. Console: Function Keys

	Key
	Description

	

	F1
	Toggle Status window

	F2
	Toggle Console screen mode (size: 25 lines vs 40 lines)

	F3
	Show command execution trace buffer (this assumes “trace 1” was issued before)

	F4
	

	F5
	

	F6
	

	F7
	

	F8
	

	F9
	Show symbol table

	F10
	

	ESC
	Stop script execution

	
	

9.5.4. Edit

This is a very simple edit that work a barebones of an editor. If large file is used, it is recommended to use editor outside of Cube.

To use the editor type edit <filename> .

If filename exist, it will load the file, if not, it will open a file with <filename>.

F1 : Help

F3 : Search
F4 : RepeatSearch
F5 : Save
F6 : Mark Block
F7 : New File Save
Ctrl-X: Delete line, or delete Block
Ctrl-V: Paste line, or Paste Block
ESC: quit the editor and bring you back to the command prompt
These are the keys that works in this editor.

Control_X , Control_V, Insert, Delete, Home, PageUp, PageDown, Backspace, UpArrow, Down Arrow, Left Arrow, and Right Arrow. Of course and all the letters and numbers works also.
[image: image29.png]Script File Name: ¢ Line: 1

F1-Help FS5-Save Esc-Quit INSERT —

Figure 1 Cube editor
At the top of the editor screen , it shows the file name “c”, and the bottom right corner shows the current insert key mode.
At the top Right corner shows the current line number.

F1: is the help key

F6: is the mark block function.

To mark, first press F6 and then move your cursor up or down to mark the block and then control _x to cut and control_v to paste
[image: image30.png]N
\F3: Search

NF4 : RepeatSearch
§F5 :::::
\Fe : Mark Block

eeeeeeeee
NCtri-x: Delete line, or delete Block
N

IIIIIII

Figure 2 Cube Editor Help
9.5.5. Help

Help is for those who needs instant help without going to the cube.doc. The contents of the help file is same as the cube.doc.

On the console:

‘?’ will print help on help.

‘??’ will invoke the help screen where the help file will be displayed.

[image: image31.png]Cube Help file

INTRODUCTION
This documentation lays out the

‘Small-

language definition.

$nall-C is developed to serve as a generic test language for Samsung.
Small-C has three major parts:

Lexical finalyzer (or, tokenizer>
Parser (Syntax analyzer based on Small-C grammar>
Code generator

Of these three. Lexical Analyzer and Parser is a generic Small-C
conpiler components. The Code Generator in other hand is micro-processor
specific. At the tine of this write—up, the code we are generating is
hased on CUBE virtual - for Cube related topics, please refer to section 7.

like lan

age with some of the C Features

In short, Small-C is a
Features/syntaxes you will NOT

syntaxes removed. Some of the key
see in "Small-C" are:

heing able to define structures
enunerations
[PGDN-Next Pagel [PGUP-Previous Pagel [Esc—Quit]

Figure 3 cube help
‘?partial word’ will find string matches the beginning of the partial word.

Example:

?wr

wr(a, h,s,b)

wre(a,b)

wrle(l,s1,s2)

wrtc current

wrxr val

wrxw val

wrbf val
so if you want to find out more about a command get closer to the command as you can

example:

?wr(

wr(a, h,s,b)

 0x30 Write Sector - PIO

 a: Cylinder or LBA

 h: head - valid only in CHS mode

 s: sector - valid only in CHS mode

 b: #of blocks to read
9.5.6. Console: Basic I/O Functions

Theses commands are used display data unto Cube console window.

	function syntax
	parameter / description
	requirement

	

	put(str)
	Display string to console window
	NA

	putd(fmtStr, int)
	Display formatted string with integer number to console window
	NA

	putf(fmtStr,float)
	Display formatted string with float number to console window
	NA

	puts(fmtStr,str)
	Display a fmtStr string with str to console window
	NA

	printf(…)
	A format specification, which consists of optional and required fields, has the following form:

%[flags] [width] [.precision] [{h | l | I | I32 | I64}]type

Each field of the format specification is a single character or a number signifying a particular format option. The simplest format specification contains only the percent sign and a type character (for example, %s). If a percent sign is followed by a character that has no meaning as a format field, the character is copied to stdout. For example, to print a percent-sign character, use %%.

The optional fields, which appear before the type character, control other aspects of the formatting, as follows:

type

Required character that determines whether the associated argument is interpreted as a character, a string, or a number. c,x,d,s,f
flags

Optional character or characters that control justification of output and printing of signs, blanks, decimal points, and octal and hexadecimal prefixes. More than one flag can appear in a format specification. -,+,0,’ ‘,#
width

Optional number that specifies the minimum number of characters output.

precision

Optional number that specifies the maximum number of characters printed for all or part of the output field, or the minimum number of digits printed for integer values.

h | l | I | I32 | I64

Optional prefixes to type-that specify the size of argument.
	NA

	newline
	Put new-line character to console
	

	getchar(var)
	Get a byte from the user and store it into var
	NA

	getd(prompt, var)
	Get a integer from the user into var
prompt: a string to display

var: variable to place data

example:

getd(“Give me data: “, R0);
	

	getf(prompt, var)
	Get a float number from the user and store it into var
	

	gets(prompt, var)
	Get a string from the user and store it into var
	Not Supported At This Time

9.5.7. Console: Display Functions

Theses commands are used for controlling/displaying formatted text unto user defined display. For any of the following functions to work, one must issue cwin() function first.

	function syntax
	parameter description
	requirement

	

	cwin(size)
	Create user console window
	NA

	gotoxy(x,y)
	Place user console cursor at x,y
	cwin

	getxy(x,y)
	Get x,y coordinate where the cursor is
	cwin

	cputs(x,y,str,attr)
	Place a text at x,y on user defined window with attribute attr
	cwin

	cputd(x,y,fmtStr,n,attr)
	Place a text and integer at x,y on user defined window with attribute attr
	cwin

	cputf(x,y,fmtStr,n,attr)
	Place a text and float number at x,y on user defined window with attribute attr
	cwin

	ccls
	Clear user define window
	cwin

Color Attributes:

	Value
	Background
	Foreground

	0
	Black
	Black

	1
	Blue
	Blue

	2
	Green
	Green

	3
	Cyan
	Cyan

	4
	Red
	Red

	5
	Magenta
	Magenta

	6
	Brown
	Brown

	7
	White
	White

	8
	Blinking Black
	Dark gray

	9
	Blinking Blue
	Light blue

	A
	Blinking Green
	Light green

	B XE "B variable"
	Blinking Cyan
	Light cyan

	C XE "C"
	Blinking Red
	Light red

	D XE "D variable"
	Blinking Magenta
	Light magenta

	E
	Blinking Brown
	Yellow

	F
	Blinking White
	Bright white

ex:

void main(void)

{

cwin(5);

// create a user console window of size 5 (max of 5 lines)

cputs(1,1,”Hello!”, 0x35);
// Display “Hello” at xy coordinate with attribute of 0x35)

return;

}
9.5.8. Run-time Control Flag Switch

Following function calls turn run-time flag switches ON or OFF

	function syntax
	parameter description
	requirement

	

	logfile <0/1>
	Turn logfile logging feature on or off (log data is saved to CUBE.LOG) – User defined console outputs are not put into log file.
0 – Turn it off

1 – Turn it on
	

	dtsk <0/1>
	Turn on/off TF echoing (TF will be echoed before TF is sent to the drive)
0 – Turn it off

1 – Turn it on
	

	tag <0/1>
	Turn on/off write buffer data tagging
0 – Turn it off

1 – Turn it on
	

	trace <0/1>
	Turn on command tracing (upto 100 last cmds will be captured)
0 – Turn it off

1 – Turn it on
	

	erhlt
	Turn on/off stop on error feature (when drive error is encountered, or buffer miscompare, the script will halt)
0 – Turn it off

1 – Turn it on
	

	slba
	Turn on/off LBA addressing (used with drive commands)
0 – Turn it off

1 – Turn it on
	

	bcmp
	Turn on/off buffer comparing (works with drive data read commands) – if the feature is on, and miscompare occurs, cube will show the miscompare data
0 – Turn it off

1 – Turn it on
	

	cmdtime
	Measure command time and store the data to CMD_TIME global variable (user can access this variable to obtain the command execution time in microseconds)
0 – Turn it off

1 – Turn it on
	

	verbose
	Turn on/off verbose mode (system messages)
0 – Turn it off

1 – Turn it on
	

	updatestat
	Turn on/off visual updating of status of disk (c/h/s/l, errors). Can improve performance but no visual indication that script is running.

0 – turn off updating

1 – turn on updating
	

	updateec
	Turn on/off updating EC

When there is a error,

1: will set the Global variable EC

0: will not set Global variable EC
	

	drqpolling
	Turn on/off polling of DRQ on data transfers. Used incase of missed interrupts

0 – turn off polling

1 – turn on polling
	

	exit
	Exits the cube
	

ex:

void main(void)

{

cmdtime 1;
// Turn on command time measurement
sk(1,1);

// seek to cyl=1, head=1

putd(”CMD EXCUTION TIME: %d”, CMD_TIME);

return;

}

When “erhlt 1” is issued and we get an error, the system will halt with option of either to STOP or to CONTINUE. If Continue is selected, Cube will read and dump TF contents and dump the trace buffer – if tracing is enabled.

9.5.9. Trace/Debug functions

	function syntax
	parameter description
	requirement

	

	trace <0/1>
	0 - turn off command tracing
1 – turn on command tracing
	

	trace_show(n)
	show n number of traced data (the last n). If n==0, show all captured traced data.
	“trace 1” must be issued before hand

	trace_clear
	clear trace buffer
	

	trace_lastcmd(var)
	store last command issued into var
	“trace 1” must be issued before hand

	debug <0/1>
	0 - turn debugging off
1 – turn debugging on
	This option should be used only by CUBE developers

	
	
	

From the console window, you can also use F3 key to displace trace buffer

ex:

void main(void)

{

trace 1;

// Enable tracing
id(1);

// Issue identify command

sk(1,1);

// Seek to cyl=1, head=1

trace_show(10);
// Display upto 10 last cmds issued

return;

}

When “erhlt 1” is issued and we get an error, the system will halt with option of either to STOP or to CONTINUE. If Continue is selected, Cube will read and dump TF contents and dump the trace buffer – if tracing is enabled.

9.5.10. Buffer functions

In Cube, there are 2 predefined buffer.

ex: buf1, buf2.

The user can map read/write buffer to one of the predefined buffer.

ex:

setrbuf(1);

// sets read buffer to buf1

setwbuf(2);

// sets write buffer to buf2
By default, when Cube is loaded, read buffer is set to buf1 and write buffer is set to buf2

Example:

To tag and fill write buffer:

 tag 1;

 wfill(0xffffffff);

	function syntax
	parameter description
	requirement

	

	atoi(str1,offset,radix,rtnval);
	Changes str into a number
Changes str1 from offset to change to a number using radix as the base.

	

	strcmp(str1,str2,len,rtnval);
	Compares str1 to str2 of length len

Rtnval=0 if equal

Rtnval non zero otherwise
	

	strcat(str1,str2);
	Concats str2 to end of str1
	

	strcpy(str1, str2);
	Copies str2 to str 1
	

	setrbuf(exp)
	set read buffer to predefined buffer id “exp”

 exp can be 1 or 2 (there are 2 predefined buffers)
	

	strlen(str1,rtnval)
	Puts strlen(str1) into returnval
	

	setwbuf(exp)
	set write buffer to predefined buffer id “exp”

exp can be 1 or 2 (there are 2 predefined buffers)
	

	wfill(pattern)
	Fill write buffer with data pattern
	Pattern must be in the hex format

	rfill(pattern)
	Fill read buffer with data pattern
	Pattern must be in the hex format

	wfillb(string, num)
	Fills the buffer with the string pattern, containing num of bytes

Example: wfillb(“aabbccddeeff1100”,8)
	

	wdump(start, count)
	Dump write buffer content from offset start for count number of bytes
	

	rdump(start, count)
	Dump read buffer content from offset start for count number of bytes
	

	bdump(start, count)
	Dump write & read buffer content from offset start for count number of bytes (side-by-side)
	

	Bswap
	Swap write buffer and read buffer (read buffer becomes write buffer and visa-versa)
	

	rpeekb(var, offset)
	Get a byte from the read buffer at offset offset
	

	rpeekw(var, offset)
	Get a word from the read buffer at offset offset
	

	wfillsp(pat)
	pat:

1: Incremental

01020304….
2: Address pattern
FFEEDDCC

3: ID pattern

using c/h/s/b writes in in BCD,hex, and inverse of c/h/s/b

4: IQ pattern

fills in sector with the current
LBA and subsequently increments the value.
5: Random pattern

	

	wpeekb(var,offset)
	Get a byte from the write buffer at offset offset
	

	wpeekw(var,offset)
	Get a word from the write buffer at offset offset
	

	rpokeb(offset, var)
	Put a byte into read buffer at offset offset
	

	rpokew(offset, var)
	Put a word into read buffer at offset offset
	

	wpokeb(offset, var)
	Put a byte into write buffer at offset offset
	

	writeb(offset,data)
	Puts data string into the write buffer

Example: writeb(0,”aabbccddeeff11002233”);
	

	wpokew(offset, var)
	Put a word into write buffer at offset offset
	

	bedit bufferId
	Edit the buffer referred to by buffer ID. Buffer ID =1 for read buffer, or 2 for write buffer
	

	brload filename
	Loads the read buffer with entire contents of file referred to by filename or 0x400000 bytes which ever is less.
	File must exist

	bwload filename
	Loads the write buffer with entire contents of file referred to by filename or 0x400000 bytes which ever is less.
	File must exist

	brsave filename
	Saves read buffer content to the file with filename. Whole 0x400000 bytes are saved.
	

	bwsave filename
	Saves write buffer content to the file with filename. Whole 0x400000 bytes are saved.
	

	bsave (

BufID,

FileName,

from,

to)
	Saves buffer content to the file with filename.

BufID 1=read, 2=Write

FileName : name of the file to save to

From: offset

To: length

Example: bsave(1,”save.bin”,0,512);
	

	brloadtrace
	Loads the trace command buffer into the read buffer
	

	bw2r(count)
	Copy write buffer to read buffer

Count : sector count
	

	br2w(count)
	Copy read buffer to write buffer

Count : sector count
	

	bcopy(desBufId, desOffset, srcBufId, SrcOffset, count)
	Buffer copy from srcBufId to desBufId

desBufId : buffer # 1 ~ 3

SrcBufId : buffer # 1 ~ 3

desOffset : byte offset from the beginning

 srcOffset : byte offset from the beginning
 count : byte count # to copy

	

	fopen(filename,mode)
	Filename: name of the file to open

Mode: 1=binary, 0 for text
	

	fclose();
	Close the opened file
	

	ftell(rtnval);
	Rtnval: returns the current file position
	

	fseek(pos);
	Sets the file pointer to pos

Pos: file pointer position
	

	fwrite(BufNum,offset,len);

	Writes the length of buffer from the offset

BufNum:Buffer Number, 1,2,3

Offset: offset of the buffer to write

Len: length of the data to write
	

	fread(BufNum,offset,len);

	reads the file into the buffer starting offset of the buffer with the length of len

BufNum:Buffer Number, 1,2,3

Offset: offset of the buffer to read in

Len: length of the data to read
	

9.5.10.1. Bedit

When the user type Bedit with parameter ‘1’ or ‘2’, a buffer editor will popup.

Buffer size is limited to 8192 blocks = 4194304 bytes.
[image: image46.emf]Start

Do Stuff

Are we done?

(expression)

Continue with

other things

Done

No

Yes

[image: image47.emf]Start

Do Stuff

Are we done?

No

Continue with

other things

Yes

Done

[image: image32.png]OFFSET: 0000000(00006h) -- HEX -- -- ASCIT --
UALUE: ©00(88h)
9123456 789ABCDEF

00000

00010: 00-00
00020: 00-00
00030: 00-00
00040 : 00-00
00050 00-00
00060: 00-00
00070: 00-00
00080 00-00
00090 00-00
00RO : 00-00
000BO: 00-00
000C0: 00-00
00600 : 00-00
OOOED: 00-00
0OOFO: 00-00

F1-Swap Entry Area F2-Fill Line F3-Search F4-Swap Buffer F5-Update
F6-Cancel F7-Compare F8-Clear F9-Fill Page ReadBuffer
Update Esc-Quit PgDn-Forward PgDn-Back Home-First End-Last OUERWRITE

Figure 4 Buffer Editor
1. Shows the offset of the data at the cursor, value is the current data value of where the cursor is.(see Figure 4 Buffer Editor)
 2. Shows the data as ascii format.(See Figure 4 Buffer Editor)
 3. This is the menu for the buffer editor. (See Figure 4 Buffer Editor)
F1: will toggle the cursor between ASCII area anf HEX area

F2: Put the cursor at a data and press F2 will fill that line with the same data as where the cursor is. (See Figure 5 Fill Line :F2)

F3. Search the buffer the data

F4. Swaps buffer between Write Buffer, and Read Buffer
F5. Saves the buffer

F6. Sets all the data back to zero

F7. Compares Data between Write Buffer and Read buffer. The mis compared data will be in purple(See Figure 7 Comparing the buffer F7).
F8. Clears the buffer

F9. Put the cursor at a data and press F9 will fill the whole buffer with the same data as where the cursor is. (See Figure 6 Fill Whole Buffer :F3)

ESC: Quits the buffer and go back to the cube command prompt

PgDn: Goes to next 512 bytes of data when full screen. If pass the limit, it will go back to offset zero.

PgUp: Goes to previous 512 bytes of data when full screen. If pass zero, it will go the 1ff00.

Home: Goes to the beginning of the offset for that screen.

End : Goes to the end of the offset for that screen .

Insert key: Toggles insert/overwrite.

[image: image33.png]OFFSET: 0000018(00012h) -- HEX -- -- ASCIT -- B
UALUE: 221(DDh) |
1 23456789 ABCDEHF 9123456 789ABCDEF
90-09 00 60 60 09 00 60 00
DD-DD DD DD DD DD DD DD DD Hinnn
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
90-00 00 60 60 09 00 60 00
: 90-00 00 60 60 09 00 60 00
: 00 90-00 00 60 90 09 00 00 00

F1-Swap Entry Area F2-Fill Line F3-Search F4-Swap Buffer F5-Update
F6-Cancel F7-Compare F8-Clear F9-Fill Page ReadBuffer
-Quit PgDn-Forward PgDn-Back Home-First End-Last OUERWRITE

Figure 5 Fill Line :F2
[image: image34.png]0000018(90012h)
221(pph) |

DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD
DD DD DD DD

Figure 6 Fill Whole Buffer :F3
[image: image35.png]OFFSET: 0000939(00027h) -- HEX -- -- ASCIT --
UALUE: ©00(88h)
9123456 789ABCDEF

00000

00010: 00-00
00020: 00-00
00030: 00-00
00040 : 00-00
00050 00-00
00060: 00-00
00070: 00-00
00080 00-00
00090 00-00
00RO : 00-00
000BO: 00-00
000C0: 00-00
00600 : 00-00
OOOED: 00-00
0OOFO: 00-00

F1-Swap Entry Area F2-Fill Line F3-Search F4-Swap Buffer F5-Update
F6-Cancel F7-Compare F8-Clear F9-Fill Page ReadBuffer
Update Esc-Quit PgDn-Forward PgDn-Back Home-First End-Last OQUERWRITE

Figure 7 Comparing the buffer F7
9.5.11. Power Control Functions
User can attach a power control board to a test system to turn power on or off.

	function syntax
	parameter description
	requirement

	

	PWR_CONTROL
	this is a predefined variable for defining the type of power controller is installed. The definitions are as follows:

0 == No power controller

1 == Parallel control (using ATX power supply)

2 == Samsung ISA power card
	

	power 1/0
	Turn on/off power
0 – Turn it off

1 – Turn it on
	PWR_CONTROL must be set to appropriate controller value. If PWR_CONTROL setting is set to 0 (no power controller), then the program will prompt the user to either turn power on manually or off when power command is received

	powermargin (switch, 5V, 12V, port, comport)
	Switch Turn on/off power
0 – Turn it off

 1-- Turn it on
5V: value for 5V, in 100’s

example: for 5.25V ->525

12V:value for 12V, in 100’s

example: for 12.75 V ->1275

port – port number of serial 8 port power card—0, if N/A

comport – comport of the powercard

0, if N/A
	PWR_CONTROL must be set to appropriate controller value. For Flexstar power, margining. Power can be turned off either by using “powermargin(0,0,0,0,0)” or “power 0”

	powr 1/0
	Turn on/off power
0 – Turn it off

 1-- Turn it on
Waits for start up time.

Displays the time to ready in seconds
	PWR_CONTROL must be set to appropriate controller value
If PWR_CONTROL setting is set to 0 (no power controller), then the program will prompt the user to either turn power on manually or off when power command is received

	ispower(port,rtnval)
	Sets the rtnval to 1 if the drive exist in the power port
	FOR PWR_CONTROL TYPE 5

	spower(chkrdy,onoff,port,comport)
	Turns power on and off

Chkrdy: 1: wait for drive ready

Onoff: turn on or off

Port: power port 1-8

Comport: comport to control power card
	PWR_CONTROLTYPE=5

9.5.11.1. ATX Power Control Via Parallel Port (PWR_CONTROL = 1)

[image: image36.emf]ATX Power

Connector

10

9

8

7

6

5

4

3

2

1

20

19

18

17

16

15

14

13

12

11

13

25

12

24

11

23

10

22

9

21

8

20

7

19

6

18

5

17

4

16

3

15

2

14

1

PC Parallel Port

DATA0

GND

GND

PC_ON

[note]

Pin 14 Pin 2

Pin 15 Pin 23

CUBE: ATX Power control via Parallel Port

Figure 8 ATX power Control card
9.5.12. PCI functions

Before CUBE can communicate with the drive under test, the user must detect and load appropriate driver (PATA/SATA). This can be done by using PCI functions
	function syntax
	parameter description
	requirement

	

	scanpci
	Scan the PCI bus for predefined SATA/PATA controller (If found, it will display the controller with HA#)
	

	scanallpci
	Scan the PCI bus for any controller (all found devices will have HA# assigned)
	

	setha(HA#)
	Sets and load device driver for the HA#
	

	pciread(var, offset)
	When setha(HA#) is issued and appropriate driver is loaded, the predefined variable PCI_BASE will be set.
This command will allow the user to access the register at offset – read in dword data from offset into var
	Must first identify the controller by issuing

scanpci or scanallpci. Then,
Load appropriate driver by issuing setha(HA#)

	pciwrite(dword, offset)
	Write dword data to pci register at offset offset
	

	
	
	

9.5.13. Memory Mapped IO

If you are working with a new hardware where writing and reading of data to the HW is done via the memory mapped IO, you must use the following predefined functions to operate on it.

Memory mapped IO operations are done in conjunction with PCI function (see PCI functions section for more info)

	function syntax
	parameter description
	requirement

	

	map_phys(mapped_addr, phys_addr, size)
	map physical (HW) memory io space into software accessable memory space.

mapped_addr: mapped address (returned value from the function)

phys_addr: physical memory space to map

size: amount of data bytes to map (must be in blocks of 0x1000 bytes)
	Caller should have used pciread() function to obtain the physical address to map prior to calling this function.

	free_phys(mapped_addr)
	Free mapped memory. This function must be called at the end of your program to free up the memory space.
mapped_addr: address to free
	assumes memory was already mapped before freeing

	gmem32(var, mapped_addr)
	Read DWORD worth of data from mapped address into var.
var: returned data

mapped_addr: memory location to read from
	memory was mapped – map_phys(…)

	smem32(data, mapped_addr)
	Write DWORD worth of data to mapped address space.
data: DWORD data to write

mapped_addr: memory location to write to
	memory was mapped – map_phys(…)

	
	
	

*** It is important to note that when mapping a physical memory space, it must be mapped in blocks of 0x1000. ie. you must mask the hardware address with 0xFFFFF000 prior to calling the map_phys(..) function.

ex: if your HW memory address is 0x1FC13204, and want to read offset 0x10 from it, you must do the following:

hw_addr = 0x1FC13204;
hw_addr = hw_addr & 0xFFFFFFF0;
// must always mask of last 4 bits

new_hw_addr = hw_addr & 0xfffff000;

difference = hw_addr – new_hw_addr;
map_phys(mappedAddr, new_hw_addr, 0x8000); // map memory

new_mappedAddr = mappedAddr + difference;
// compute new addr

gmem32(data, new_mappedAddr + 0x10);

// get data

free_phys(mappedAddr);

// free up memory space

Running code example (Reading & Writing using memory mapped io scheme on Si3124 controller):

//==

//= By: Daniel

//=

//= Memory mapped io example using CUBE
//=

//= - we will flash the LED of Si3124 card (Silicon Image SATA-II card)
//=

//==

void main()

{

 int BAR1; // PCI config space BAR1 register

 int mappedAddress; // Will hold mapped io space addr

 int difference;

 int offset;

 put("BAR1 - LRAM dump");newline;

 pciread(BAR1, 0x18);

// Read BAR1 (PCI Configuration Space)
 R0 = BAR1 & 0xFFFFF000;

 difference = BAR1 & 0x00000FF0;

 map_phys(mappedAddress, R0, 0x8000);

 R0 = mappedAddress + difference;
 newline;

 putd(" mapped io address: R0 = %X", R0); newline;newline;

offset = 0;

 for (R10=0; R10 < 20; R10++)

 {

 smem32(0x8000, R0+0x1000); // LED on

 delaym(50);

 smem32(0x8000, R0+0x1004); // LED off

 delaym(50);

 }
 free_phys(mappedAddress);

}

9.5.14. Other & Date/ Time

	function syntax
	parameter description
	requirement

	

	randomize
	NA
	NA

	rand(var, minV, maxV)
	var: place to store random number

minV: lower limit

maxV: upper limit
	NA

	timestamp(str1)
	Sets str1 with the current time (hh/mm/ss)
	

	time
	display current time (hh/mm/ss)
	NA

	gettime(var)
	get system elapsed time (elapsed since Jan. 1, 1970) in seconds.

example:

void main()

{

int sTime;

int eTime;

gettime(sTime);

delays(10); // delay for 10 seconds

gettime(eTime);

putd(”Diff: %d”, eTime-sTime;

}

	

	datestamp(str1)
	Sets str1 with the current date (mm/dd/yy)
	

	date
	display current date (mm/dd/yy)
	NA

	delays(sec)
	delay sec seconds
	

	delaym(msec)
	delay msec milliseconds
	

	clock
	display current time in milliseconds
	

	cmdtimeout(msec)
	Set drive command timeout value to msec

Default is 10,000 milliseconds
	

	starttimer
	Save current clock into global variable “TICK”. This is a prerequisite for “ts“ command.
	

	stoptimer
	Get and show the elapsed time since previous “st” command.
	

	
	
	

9.5.15. Legacy Command Tag-Queue

	function syntax
	parameter description
	requirement

	

	showq
	Show outstanding queue cmds that has yet to be serviced – cmd issued but waiting to be serviced
	

	checkq
	check DUT to see whether it has any cmds to service. If so, service it.
	

	debug_cmdq <0/1>
	enable/disable debug verbose mode (for cmdq)
0 – Disable

1 – Enable
	

	
	
	

	rdmaqe(lba, b, tagId)
	issue extended read cmdq with tagId.
Cmd will be serviced when checkq cmd from script is issued
	

	wdmaqe(lba,b,tagId)
	
	

	rdmaq(lba,b,tagId)
	
	

	wdmaq(lba,b,tagId)
	
	

	
	
	

	
	
	

example:

//===

//= By: Daniel

//=

//= Tag Cmd Queue example using CUBE

//=

//===

void main(void)

{

 int tagId, lba;

 id(0); // Device identify

 trace 1; // Turn on TRACE (for debugging)

 cmdtime 1; // Enable cmd time measurement

 // (to see execution time)

 for (tagId=1; tagId<10;) // for tag ID 1 to 30

 {

 rand(R0, 0, MAX_LBA); // Obtain random LBA

 rdmaq(R0,1,tagId); // Issue ReadCmdQ

 tagId++;

 }

 for (R0=10; R0; R0--)

 {

 delaym(500); // Wait for 500 milliseconds

 checkq; // Check to see whether we have any

 // outstanding cmdq that needs

 // servicing. If so, checkq will

 // service it

 }

 showq; // see if anything is left in the Q

 // If so, it means not all command was serviced

 return;

}

9.5.16. Native Command Queuing

In order to use Serial ATA Native Command Queuing commands over a particular Serial ATA port, three requirements must be met:
· The host controller NCQ feature (must support the DMA Setup FIS and the Set Device Bits FIS in order to enable First Party DMA transfers and efficient command completion)
· The software driver must support the Read FPDMA Queued and Write FPDMA Queued commands.

· The drive must support Serial ATA Native Command Queuing.

	function syntax
	parameter description
	requirement

	

	gettagid(var)
	var: tag id available
	

	rfpdma(lba, nb, tagId)
	Read First Party DMA

tagId: cmd tag id

lba: lba location to read

nb: num of blocks to read
	SATA drive supporting Native command queueing. Must provide valid tagId – user should make a call to gettagid(var) to request for an available tag id

	wfpdma(lba, nb, tagId)
	Write First Party DMA

tagId: cmd tag id

lba: lba location to read

nb: num of blocks to read
	SATA drive supporting Native command queueing. Must provide valid tagId – user should make a call to tagid(var) to request for an available tag id

	scontrol(var, dir)
	dir: direction bit (0 == read, else write)

var: if dir==0, var will have scontrol read value. Else, var is the data to be written to SCONTROL register
	

	sstatus(var)
	var: data read from SSTATUS register
	

	serror(var, dir)
	dir: direction bit (0 == read, else write)

var: if dir==0, var will have serror read value. Else, var is the data to be written to SERROR register (writing will clear the bit in SERROR register bit field)
	

	sactive(var)
	var: data read from SACTIVE register
	

	satapm var
	var: HIPM mode

(1 : active, 2 : partial, 6 : slumber mode)
	Supported only on ICH6R with int_ahci.drv

	comreset var
	var : reset mode

(0 : port reset, 1 : HBA reset - all port)
	int_ahci.drv supports comreset 0 & 1.

int_ich.drv supports only comreset 1.

	ahci 1/0
	ahci 0 : Standard ATA mode (default)

ahci 1 : AHCI mode

	User must make a call to scanallpci and setha() after ahci command.

	ncq 1/0
	Flag, to send ncq array command
	

	clearncq
	Clears ncq array
	ncq flag =1

	sendncq 1/0
	Sends the ncq array queue
Clears the ncq array

sendncq 0: do not wait for command completion

sendncq 1: wait for command completion
	ncq flag =1

More to be done….
9.5.17. Drive Commands

Before any drive command is issued, the user must make sure the controller is selected and the driver is loaded by issuing following two PCI functions

1 – scanpci or scanallpci

2 – setha(HA#)

For DMA functions/commands, the user must make sure the following are true:

· Controller supports DMA and/or UDMA

· Transfer mode is set by issuing setf(m) function

For Extended command, you must make sure your controller supports extended mode

[note] any drive command having CHS or LBA mode addressing option, to issue command in LBA mode, the user must issue “slba 1” prior to issuing the drive command. Or, if user wants to use CHS mode, you’ll are required to issue “slba 0” prior to issuing the drive command

The command execution timeout is based on the CMD_TIMEOUT global variable; the value is in milliseconds. User can modify the timeout value using cmdtimeout(exp) function.

ex: cmdtimeout(123);
// change cmd timeout value to 123 milliseconds

All drive commands will be affected.

	function syntax
	OP
	parameter/description

	cmd(op,fe,sc,sn,cl,ch,dh,bs,xb,dir)

	user
	Create and issue user defined drive command. User can use this function to issue Vendor Unique commands.

op: drive opcode

fe: feature (16bit)

sc: sector count (16bit)

sn: sector number (16bit)

cl: cylinder low (16bit)

ch: cylinder high (16bit)

dh: device/head (16bit)

bs: block size (32bit)

xb: blocks to transfer (32bit)

dir:data transfer direction (8bit)

0 – No data transfer

1 – Data in (from drive)

2 – Data out (to drive)

[note]

“bs” & “xb” has no meaning if “dir” is set to ZERO

example: to unlock Samsung Drive

void main()

{

int CMD_UNLOCK;

int PASS_FE;

int LOCK;

CMD_UNLOCK = 0xC0;

PASS_FE = 0x22;

LOCK = 0;

cmd(CMD_UNLOCK,PASS_FE,LOCK, 0,0,0,0xA1,0,0,0);

}
To set the

	
	
	

By function name
	function syntax
	OP
	parameter/description
	requirement

	cfa_es(lba, s)
	0xC0
	CFA Erase sector

lba:

s: sector
	

	dcfg(f)
	0xB1
	Device Configuration

f: Feature

0xC0 – Restore

0xC1 – Freeze lock

0xC2 – Identify

0xC3 – Set
	

	ckpw
	0xE5
	Check Power Mode
	

	diag
	0x90
	Diagnostic
	

	dreset
	0x08
	NA
	

	dw fn
	0x92
	Download Micro Code (Diskware)
fn: filename
example: dw “palo.dn2”;
	

	idle t
	0xE3
	Idle

t: timer period value

0 // Timeout disabled

1-240 // (t * 5) seconds

241-251 // ((t-240)*30) minutes

252 // 21 minutes

253 // between 8 and 12 hours

254 // Reserved

255 // 21 min 15 seconds
	

	flush
	0xE7
	Flush Cache
	

	flushe
	0xEA
	Flush Cache Extended
	

	id m
	0xEC
	Device Identify

m: display mode

0 == Do not display data

1 == Display data
	

	idlei
	0xE1
	Idle Immediate
	

	nop
	0x00
	NA
	

	nvcache(fea,lba,sc)
	0xB6
	Send Non-Volatile CACHE command to drive. Features register controls what type of NVCACHE command.

0x00 : Set NV Cache Power Mode

0x01 : RETURN From NV Cache Power Mode

0x10 : Add LBA(s) to NV Cache Pinned

0x11 : Remove LBA(s) From NV Cache Pinned Set

0x12 : Query NV Cache Pinned Set

0x13 : Query NV Cache Misses

0x14 : Flush NV Cache
	For Hybrid-HDD

	rbuf
	0xE4
	Read Buffer
	

	reset
	NA
	reset device – issue soft reset to controller/drive
	

	rd(c_lba, h, s, b)
	0x20
	Read sector - PIO

c_lba: cylinder or lba

h: head – valid if not in lba mode

s: sector – valid if not in lba mode

b: #of blocks to read
	

	rde(lba, b)
	0x24
	Read sector extended – PIO

lba : lba location to read

b: #of blocks to read
	

	rdlg (l,h,s)
	0x22
	Read Long

l: cylinder or lba

h: head

s:sector
	Id or init

	
	
	
	

	rdle(l,s1,s2)
	0x2F
	Read Log Extended

l: logAddress

s1: sector offset

s2: sector count
	

	rdma(a,h,s,b)
	0xC8
	Read DMA

a: cylinder or lba

h: head – valid if CHS mode enabled

s: sector – valid if CHS mode enabled

b: #of blocks to xfer
	setf()

	rdmae(lba, b)
	0x24
	Read DMA extended

lba: lba location to read

b: #of blocks to read
	- setf()

- Controller with DMA support

	rdmaq(lba, b, tag)
	0xC7
	Read DMA Queued

lba:

b: #of blocks to xfer

tag: tag id
	- setf()
-

	rdmaqe(lba, b, tag)
	0x26
	Read DMA Queued extended

lba: lba location to read

b: #of blocks to read

tag: tag id
	- setf()
-

	rm(a,h,s,b)
	0xC4
	Read Multiple

a: Cylinder or LBA

h: head – valid if CHS mode enabled

s: sector – valid if CHS mode enabled

b: #of blocks to xfer
	sm()

	rme(lba, b)
	0x29
	Read Multiple Extended
	Must have issued set multiple command

	rnma
	0xF7
	Read Native Max Address
	

	rnmae
	0x27
	Read Native Max Address Extended
	

	rtsk
	NA
	read and display current device TF
	

	rv(a,h,s,b)
	0x40
	Read Verify

a: Cylinder or LBA

h: head – valid only in CHS mode

s: sector – valid only in CHS mode

b: #of blocks to xfer
	

	rve(lba,b)
	0x42
	Read Verify Extended

lba:

b: #of blocks to xfer
	

	rw fn
	0x92
	Download Micro Code (Ramware)
fn: filename
example: rw “palo.dn2”;
	

	scdp
	0xF6
	Security – Disable password
	

	scep
	0xF3
	Security - Erase Prepare
	

	sceu
	0xF4
	Security – Erase Unit
	

	scfl
	0xF5
	Security – Freeze Lock
	

	scsp
	0xF1
	Security - Set Password
	

	scul
	0xF2
	Security - Unlock
	

	serv
	0xA2
	Overlap * Queued service
	

	setf(f)
	0xEF
	Set Features

f: Feature value
01h: Enable 8-bit data transfers
02h: Enable write cache

03h: Set transfer mode based on value in Sector Count register
33h: Disable retry
42h: Enable AAM
44h: Length of vendor specific bytes on READ LONG/WRITE LONG commands

54h: Set cache segments to Sector Count register value

55h: Disable read look-ahead feature

66h: Disable reverting to power on defaults
77h: Disable ECC
81h: Disable 8-bit data transfers
82h: Disable write cache
88h: Enable ECC
99h: Enable retries

AAh: Enable read look-ahead feature

ABh: Set maximum prefetch using Sector Count register value
BBh: 4 bytes of vendor specific bytes on READ LONG/WRITE LONG commands
C2h: Disable AAM

CCh: Enable reverting to power on defaults

f0h: disable dummy RG, VU

f1h: disable s/w ecc function, VU

f2h: disable defect management, VU

f3h: disable offtrack write, VU

f4h: Go back to non volatile capacity on hard reset

fbh: Keep current volatile capacity on hard reset for Time's request
fch: enable offtrack write, VU

fdh: enable defect management, VU

feh: enable s/w ecc function, VU

ffh: enable dummy RG, VU
03h - Set Transfer mode in Sector Count Reg value

00h=PIO deflt, 01h=PIO deflt/disbl IORDY, 00001nnn=PIO w/ IORDY, 00100nnn=MW DMA
TO Set mode
setf(0x0003) Pio default mode

setf(0x0103) Pio default mode, disable IORDY

setf(0x0903) Pio flow control transfer mode 1

setf(0x0A03) Pio flow control transfer mode 2

setf(0x0B03) Pio flow control transfer mode 3

setf(0x2103) Multiword DMA mode 1

setf(0x2203) Multiword DMA mode 2

setf(0x2303) Multiword DMA mode 3

setf(0x4103) Ultra DMA mode 1
setf(0x4203) Ultra DMA mode 2

setf(0x4303) Ultra DMA mode 3

setf(0x4403) Ultra DMA mode 4

setf(0x4503) Ultra DMA mode 5

setf(0x4603) Ultra DMA mode 6
54h - Set cache segments to Sector Count Reg ABh - Set max prefetching using Sector Count Reg value

For more detail for setting udma mode refer to section 6.1
	

	setp(param)
	0x91
	Set parameter

Param: parameter
	

	sk(a,h)
	0x70
	Seek

a: Cylinder or LBA

h: head – valid only in CHS mode
	

	sleep
	0xE6
	Sleep
	

	sm(m)
	0xC6
	Set Multiple

m: multiple value
	

	smart(f,opt1,opt2)
	0xB0
	Smart

f: feature

D0 – SMART Read Data
 (SRAV)

D1 – SmartReadAttributeThresholds
(SRAT)
D2 – Enable/Disable Attrib
 (SAAS (opt))
D3 – SmartSaveAttributeValues
 (SSAV)
D4 – Execute Off-line immediate
 (SAST : abort self test)

 (SCTC : Comprehensive test)

 (SCTO : Comprehensive test)

 (SEOI : Offline Immediate)

 (SQTC : Quick self test)

 (SQTO : Quick self test)

 (SSTC : Save attr value)
 (SSTO : Save attr value)
D5 – Read Log
 (SRLS (opt1, opt2))

 (SRST : Read self test sec)

 (SRLC : Read Log Record)
D6 – Write Log
 (SWLS (opt1, opt2))

 (SWST (opt1, opt2))
D7 – Obselete

D8 – Enable operation
 (SESO)
D9 – Disable operation
 (SDSO)
DA – Return status
 (SRSS)
DB – SmartEnableDisableAutoOffline
 (SAOL(opt))

DE – VU
 (SISV)

opt1: option1 – used with D2, D5, & D6
This value sets the SectCount

opt2: option2 – used with D4, D5, & D6
This value sets the SectNum
	

	smax(f,mlba,f)
	0xF9
	Set Max Address

f: feature

00 - Obsolete (I will use it for Set Max Address)

01 - Set Max Set password

02 - Set Max Lock

03 - Set Max Unlock

04 - Set Max Freeze lock

mlba: max lba to set to

f: flag

0 == volatile

1 == non-volatile
	

	smaxe(mlba, flag)
	0x37
	Set Max Address Extended

mlba: max lba

flag: 0 == volatile

 1 == non-volatile
	

	stbi
	0xE0
	Standby Immediate
	

	stby t
	0xE2
	Standby

t: time perior value
	

	stconfig(i,s,t,f)
	0x51
	Config Stream

i: stream id

s: size

t: timeout

f: feature option
	

	strdma(i,s,t,l,f)
	0x2A
	Read Stream DMA

i: stream id

s: size

t: timeout value

l: lba

f: featureOption
	

	strpio(i,s,t,l,f)
	0x2B
	Read Stream PIO

i: stream id

s: size

t: timeout value

l: lba

f: featureOption
	

	stwdma(i,b,t,l,f)
	0x3A
	Write Stream DMA

i: stream id

b: #of blocks to xfer

t: timeout

l: lba

f: feature option
	

	stwpio(i,b,t,l,f)
	0x3B
	Write Stream PIO

i: stream id

b: #of blocks to xfer

t: timeout

l: lba

f: feature option
	

	wbuf
	0xE8
	Write Buffer
	

	wdma(a,h,s,b)
	0xCA
	Write DMA

a: cylinder or lba

h: head – valid if CHS mode enabled

s: sector – valid if CHS mode enabled

b: #of blocks to xfer
	

	wdmae(lba,b)
	0x35
	Write DMA Extended

lba:

b: #of blocks to read
	

	wdmafe(lba, b)
	0x3D
	Write DMA FUA Extended

lba:

b: #of blocks to xfer
	

	wdmaqfe(lba,b)
	0x3E
	Write DMA Queued FUA Extended

lba:

b: #of blocks to xfer
	

	wdmaq(lba,b,tag)
	0xCC
	Write DMA Queued

lba:

b: #of blocks to xfer

tag: tag id
	

	wdmaqe(lba,b,tag)
	0x36
	Write DMA Queued Extended

lba:

b: #of blocks to read

tag: tag id
	

	wfldma(lba, nb, tagId)
	0x61
	Write First Party DMA

tagId: cmd tag id

lba: lba location to read

nb: num of blocks to read
	

	wm(a,h,s,b)
	0xC5
	Write Multiple

a: Cylinder or LBA

h: head – valid if CHS mode enabled

s: sector – valid if CHS mode enabled

b: #of blocks to xfer
	

	wme(lba,b)
	0x39
	Write Multiple Extended

lba:

b: #of blocks to read
	

	wmfe(lba, b)
	0xCE
	Write Multiple FUA Extended

lba:

b: #of blocks to xfer
	

	wr(a, h,s,b)
	0x30
	Write Sector – PIO

a: Cylinder or LBA

h: head – valid only in CHS mode

s: sector – valid only in CHS mode

b: #of blocks to read
	

	wre(a,b)
	0x34
	Write Sector Extended

a: Cylinder or LBA

b: #of blocks to read
	

	wtlg (l,h,s)
	0x32
	Write Long

l: cylinder or lba

h: head

s:sector
	Id or init

	wrle(l,s1,s2)
	0x3F
	Write Log Extended

l: log address

s1: sector offset

s2: sector count
	

	
	
	
	

9.5.18. Drive Commands (Samsung VU Commands)

	function syntax
	OP
	parameter/description
	requirement

	unlk
	
	Unlock VU mode
	

	lock
	
	Lock VU mode
	

	snde
	
	Send drive error code
	none

	config
	
	Display drive’s VU data which includes zone table
	“init”

	r2b FID
	
	Load code from Ref-MC to Boot location

 FID: MCFS file id
	FW must support DL-PTR

	r2mc FID
	
	Copy code from Ref-MC to MC

 FID: MCFS file id
	FW must support DL-PTR

	mc2b(FID)
	
	Load code from MC to Boot location

 FID: MCFS file id
	FW must support DL-PTR

	h2mc(filename,FID)
	
	Load code from HOST to MC

 filename: file to download

 FID: MCFS file id
	FW must support DL-PTR

	Chrb val
	9Ah/17h
	Read Channel Buffer [0-ffffh]
	

	Chrp(val,RturnVal
	9Ah/1Ah
	Read Channel Preamp [0-ffffh]

returns the data on ReturnVal
	

	Chrr(val,ReturnVal)
	9Ah/16h
	Read Channel Register[0-ffffh], returns the data on ReturnVal
	

	Chud
	
	Read Channel Record none
	Uses channel table in Buffer

	Chwb val
	9Ah/15h
	Write channel Buffer [0-ffffh]
	

	chwp val
	9Ah/19h
	Write channel Preamp [0-ffffh]
	

	chwr val
	9Ah/14h
	Write channel Register [0-ffffh]
	

	clearncq
	n/a
	Clears ncq command queue
	ncq flag=1

	conv val
	9Ah/1Eh
	val = [0/1/2]0 = LBA to physical

1 = physical to LBA

2 = LBA to physical with defect mapping: Drive type/FW dependent

val = [0/1/2]
	

	filt (s,cyl)
	C2h
	Write filter register. The R/W channel registers are addressed through ASIC register 1032h
S: sector number

Cyl: cylinder

	

	fmtu opt
	8Fh
	Format Unit [options 0- 255]

Defect List Utility

1.Create D list from the burn-in error log

2.Create R and S list from the D list.
3.Add the defect specified by the (C,H,S) to the A list.

4.Initialize the A list.

5.DC erase the Track.

9. Read Servo Writer Record

	opt can be greater than 255.
(LSB of opt : feature register,

MSB of opt : sector count register)

	fmtd opt
	8Ch
	Format track with Defect [0/1]
	

	fmtg
	8Dh
	Format Gap
	

	folw
	FBh
	Get PES distribution :test
	

	getmodel(str1)
	
	Puts model to str1
	Must do id/init first

	getfw(str1)
	
	Puts fw version into str1
	Must do id/init first

	getsn(str1)
	
	Puts serialnumber into str1
	Must do id/init first

	getengver(str1)
	
	Puts engineering firmware version into str1
	Must do init first

	getmaxhead Var
	
	Returns max head for current drive,
	

	findlastcyl var
	
	Returns last cylinder
	

	getmaxzone var
	
	Returns max zone
	

	chs2pba var
	
	Returns pba for current chs
	

	cs2lba var
	
	Returns lba for current chs
	

	calczone var
	
	Returns currentzone for current cyl, current head
	

	calcwedge(wedge)
	
	Returns current wedge number using current cylinder, head,sector.

wedge: Returned Wedge number
	

	getsect4cyl var
	
	Returns sector number for current cylinder
	

	floatcmp(floata,float b,int c)
	
	Compares two float a and b and return c as the result.

c == 1 if a is greater than b,

c == 0 if a is equal to b,

c == -1 if a is less than b.
	

	str2float(str a,float b);
	
	Changes string to a float

String a: float in a string format

Float b: a float number

Example: float a; str2float(“1.0”,a);

// a is equal to 1.0
	

	newlogfile “filename”
	
	Set filename to the logfile instead of cube.log

If filename = “serialnumber”

Then the actual file name will be the serial number of the testing drive

You will need to do identify before this command.

Example: id 0;

 newlogfile “serialnumber”;

 logfile 1;
	

	delfile “filename”
	
	Deletes the file named filename
	

	showstat
	
	Replaces the previous command summ.

Prints the status of read/write/seek count
	

	zerostat
	
	Replaces the previous command zero.

Zeros out the read/write/seek count
	

	Addh val
	
	Adds the val the head, increments it until max head, then increments the cylinder until max cylinder for all head
	

	Addc val
	
	Adds the val to cylinder until the max cylinder
	

	gettf(RegNum, ReturnVal);
	
	GETTF -- Gets the taskfile register

Parameter: int RegNum, int Val

RegNum :1 ->returns the feature/Error register to Val

RegNum :2 ->returns the Sector Count register to Val

RegNum :3 ->returns the Sector Number register to Val

RegNum :4 ->returns the Cylinder Low register to Val

RegNum :5 ->returns the Cylinder High register to Val

RegNum :6 ->returns the Device Head register to Val

RegNum :7 ->returns the command/ Status register to Val

default: returns 0 to Val

example: gettf(1,R0);// R0 contains feature/error register value
	

	gird
	9Ah/04h
	Get Read Current
	

	giwt
	9Ah/03h
	Get Write Current
	

	idto opt
	9Ah/0Eh
	Idle Seek Timeout [Enable=1,Disable=0]
	

	init zone
	C0h/ECh
	Initialize Drive Zone Limits [0-255]
zn: zone id. If 0, init full user accessable zone

This command will unlock the drive and retrieve VU specific info from the drive. It will also update MAX_PC, MAX_PH, MAX_PS, MAX_PBA, and MIN_PC
	

	inith zn hd
	C0h/ECh
	Initialize Drive Zone Limits [zone][hd]

zn: zone to init to
sn+100 will set the c to max_cyl for that head

hd: head to init to

This command DOES NOT issue drive command. This will use zone table info retrieved by issuing “init” and will update MAX_PC, MAX_PS, MAX_PBA, and MIN_PC for zn & hd

	“init” must have been issued for correct functionality

	loadcompat
	func
	Loads the compat driver for dos cube
	

	ltsk
	func
	Gets the last set of command taskfile
	

	mput fid
	0x9A/0x22
	Write MCFS File (fid)
	

	mget fid
	0x9A/0x22
	Read MCFS File [fid]
	

	offt offset
	FDh
	Set track offset percentile ((0-31)
	

	phrd sectorC
	80h
	Physical Read Sectors (0-255)
	Physical C/H/S should be set

	phrv sectorC
	81h
	Physical Read Verify Sectors (0-255)
	Physical C/H/S should be set

	phwr sectorC
	82h
	Physical Write Sectors (0-255)
	Physical C/H/S should be set

	prdl sectorC
	22h
	Physical version of ATA Read Long (read 1 sector plus ECC bytes)
	Must do set feature 0x44 and then id in order to use this command to set actual ECC #

	prlu
	84h
	Physical read long
	Reads two sectors of data including ecc bytes

	prtk
	86h
	Physical Read Track
	Physical C/H should be set

	psek mode
	8Eh
	Physical Seek (Mode: 0=write/1=read)
	Physical C/H/S should be set

	pwrl sectorC
	32h
	Physical version of ATA Write Long (write 1 sector plus ECC bytes)
	Must do set feature 0x44 and then id in order to use this command to set actual ECC #

	pwtk
	85h
	Physical Write Track
	Physical C/H/S should be set

	rchd hd
	9Ah/0Ch
	RCO test for specific Head [head 0-max]
	

	rcoa hd
	9Ah/0Bh
	RCO test for Drive
	Generate RCO test for all zone s and heads

	rczh zone
	9Ah/0Ah
	RCO test for specific zone/Head[zone 0-max]
	

	rczn zone
	9Ah/09h
	RCO test for specific zone [zone 0-max]
	

	Rdib
	1Ah
	Read Bias Current
	Currently calculated for agere only, more to come

	Rdiw
	1Ah
	Read write Current
	Currently calculated for agere only, more to come

	rdbf val
	88h
	Read Buffer Block Page [page ffffh]
	

	Rdhv
	9Ah/0Dh
	Read Buffer Head Voltage
	

	rdxr val
	F0h
	Read External Memory byte [0-ffffh]

	The disk memory location [nn] is read ans displayed

	rdxw (val,RtnVal)
	9Ah/11h
	Read external memory word 2-bytes [mem location]

RtnVal: value returned to use
	The disk memory location [nn] is read ans displayed

	Rpes
	FBh
	Read PES amplitude
	

	scra
	n/a
	Servo calibration
	

	Sendncq

	n/a
	Sends ncq commands to the driver
	ncq flag=1

	sgry opt
	FAh
	Scan Grey Code: The 13 bit gray code at DSP memory address 0205h is read and displayed. The ACC is set equal to the 16 bit contents of DSP address 0205h.
[0-255]

	

	shrr opt
	FFh/80h
	Set Hidden Retry count – Read [0-10]
	

	shrw opt
	FFh/C0h
	Set Hidden Retry count – Write [0-10]
	

	sird current
	9Ah/02h
	Set Read channel Current [current]
	Uses current cylinder/Head

	siwt current
	9Ah/01h
	Set Write channel Current [10h-98h]
	Uses current cylinder/head

	Skew
	F7h
	Head skew calibration
	

	test
	9Ah
	Create and issue user defined vendor unique drive command.

Subop: drive subopcode (8 bit)

sc: sector count (16bit)

sn: sector number (16bit)

cl: cylinder low (16bit)

ch: cylinder high (16bit)

dh: device/head (16bit)

	

	tnmr (repeat, pass)
	9Ah/05h
	Tune MR Head [repeat count 1-255] [pass]
	

	tone val
	8Ah
	Tone Fill Gap
	

	wrtc current
	
	Set Write current value [0-ffh]
	

	wrxr val
	
	Write External Register(byte)[0-ffffh]
	

	wrxw (address,val)
	
	Write external Register(word)[0-ffffh]

Address: Register address

Val: value
	

	wtrk val
	
	Write Track(starting sector)[0 – 255]
	The command argument specifies the starting sector to write. All sectors of the track are written starting at the sector number[nn].

	wrbf val
	0x89
	Write buffer block [0-0xffff]
	

9.5.19. MISC commands (Math,Test….)

	function syntax
	OP
	parameter/description
	requirement

	Sqrt(val,RtnVal)
	
	Val: value to be square rooted
RtnVal: Value returned
	Val , and RtnVal is both type float

	log(val, RtnVal)
	
	Val: value to be log

RtnVal: Value returned
	Val , and RtnVal is both type float

	log10(val, RtnVal)
	
	Val: value to be log10

RtnVal: Value returned
	Val , and RtnVal is both type float

	sktm(mode)
	
	1. mode: 0=write/1=read)
2. “s” should be set up as test type.

TRK_TRK 0x01

TWO_TRK 0x02

ONE_THIRD 0x04

FULL_TRACK 0x08

AVG_SEEK 0x10

WEIGHTED_AVG_SEEK 0x20
All test 0xff

3. “acc” should be set up as repeat count when we test WEIGHTED_AVG_SEEK.
	

	showdefect(“filename”)
	
	Displays the defect list to the file :filename
	Must use after burin in

	createfile(handle, name)
	
	The createfile function creates or opens a file, directory, physical disk, volume, console buffer, tape drive, communications resource, mailslot, or pipe.

- parameter / description

@ handle: Variable to contain an open handle to the specified file.

@ name: Pointer to a null-terminated string that specifies the name of the object to create or open.

- warning : This function can damage your hard disk drive if you use it for a wrong purpose.
	

	closehandle(handle)
	
	The closehandle function closes an open object handle.

- parameter / description

@ handle: Handle to an open object.

- warning : This function can damage your hard disk drive if you use it for a wrong purpose.
	

	readfile(handle, lba, count)
	
	The readfile function reads data from a file, starting at the position indicated by the lba.

- parameter / description

@ handle: Handle to the file to be read.

@ lba : File LBA position to be read.

@ count : Number of sectors to be read from the file.

- warning : This function can damage your hard disk drive if you use it for a wrong purpose.
	

	writefile(handle, lba, count)
	
	writefile function writes data to a file.

- parameter / description

@ handle: Handle to the file to be written.

@ lba : File LBA position to be written.

@ count : Number of sectors to be written from the file.

- warning : This function can damage your hard disk drive if you use it for a wrong purpose.
	

	
	
	
	

9.5.20. Command compatibility between Gemini and Cube

	Gemini commands
	Cube Commands
	

	summ
	showstat
	

	zero
	zerostat
	

	ldac
	N/A This is obsolete for cube, since cube have more than one parameters
	Example:

Ldac 9; wtrg f2h; fmtu 3;

Do cmd(0x8f,3,9,0,0,0,512,1,0);

	wtrg
	Use cmd to input the register value see example below

	Example:

Ldac 9; wtrg f2h; fmtu 3;

Do cmd(0x8f,3,9,0,0,0,512,1,0);

	spsz
	tnmr
	

9.5.21. Error code definition

	Error code
	Error Number
	Definition

	EC_NOERROR
	0x00
	Pass, no error

	EC_ERROR
	0x01
	Error, undefined

	EC_KEYBOARD_INTERRUPTION
	0x02
	Keyboard interruption

	EC_ERRORHALT
	0x03
	Error halt, set by the user

	EC_FAILED_TO_OPEN_LOGFILE
	0x04
	Failed to open logfile

	EC_CMD_FAIL_TO_OPEN_FILE
	0x05
	Fail to open file

	EC_CMD_FAIL_TO_READ_FILE,
	0x06
	Fail to read file

	EC_CMD_FAIL_TO_WRITE_FILE,
	0x07
	Fail to write file

	EC_CMD_FAIL_IDENTIFY_DRIVE,
	0x08
	Failed to identify the drive

	EC_BUFFER_MISCOMPARE
	0x2000
	Buffer miscompare

	EC_ALLOC_MEMORY
	0x4000
	Cannot allocate memory

	EC_ALLOC_BUF1
	0x4001
	Cannot allocate buffer 1

	EC_ALLOC_BUF2
	0x4002
	Cannot allocate buffer 2

	EC_ALLOC_BUF3
	0x4003
	Cannot allocate buffer 3

	EC_DRIVER_NOT_LOADED
	0x4004
	Driver not loaded

	EC_DRIVER_NO_SETHA
	0x4005
	Driver User has yet to issue SETHA

	EC_DRIVER_NO_HOST_ADAPTER
	0x4006
	Driver No host adaptor found

	EC_DRIVER_NO_STATUS
	0x4007
	Driver No Status found

	EC_DRIVER_FAILED_TO_RESET
	0x4008
	Driver Failed to reset

	EC_DRIVER_FAILED_TO_ABORT
	0x4009
	Driver Failed to abort

	EC_DRIVER_FAILED_TO_OPEN_FILE
	0x4010
	Driver Failed to open file

	EC_DRIVER_WRONG_FILE_FORMAT
	0x4011
	Driver Wrong file format

	EC_DRIVER_FAILED_TO_READ_FILE
	0x4012
	Driver Failed too read driver file

	EC_DRIVER_FILE_ID_NOT_FOUND
	0x4013
	Driver File Id not found

	EC_DRIVER_FILE_LENGTH_ZERO
	0x4014
	Driver File Length is zero

	EC_DRIVER_FILE_ACCESS
	0x4015
	Driver no file access

	EC_DRIVER_FAILED_TO_ALLOCATE_MEM
	0x4016
	Driver failed allocate memory

	EC_DRIVE_MCFS_ERROR
	0x6000
	Mcfs error

	EC_DRIVE_MCFS_READ_FAILED
	0x6001
	MCFS read failed

	EC_DRIVE_MCFS_WRONG_SPT
	0x6002
	MCFS wrong script

	EC_DRIVE_ERROR
	0x8000
	Drive Error

	EC_DRIVE_CMD_TIMEOUT
	0x8001
	Command timeout

	EC_DRIVE_DRQ_TIMEOUT

	0x8002
	DRQ timeout

	EC_DRIVE_IRQ_TIMEOUT
	0x8003
	IRO timeout

	EC_DRIVE_BUSY_TIMEOUT
	0x8004
	Busy timeout

	EC_DRIVE_HOST_RESET_TIMEOUT
	0x8005
	Host Reset Time Out

	EC_DRIVE_ST_WRITE_FAULT
	0x8006
	Status Write fault error

	EC_DRIVE_ST_NOT_READY
	0x8007
	Status Drive not ready

	EC_DRIVE_ST_SEEK
	0x8008
	Status Seek error

	EC_DRIVE_ST_DATA_CORRECTED
	0x8009
	Status Data corrected

	EC_DRIVE_ST_BUSY
	0x8010
	Status busy

	EC_DRIVE_ER_SECTOR

	0x8011
	Error Reg sector

	EC_DRIVE_ER_ECC

	0x8012
	Error Reg ECC

	EC_DRIVE_ER_UNDEFINED
	0x8013
	Error Reg undefined

	EC_DRIVE_ER_ID_NOT_FOUND
	0x8014
	Error Reg ID not found

	EC_DRIVE_ER_ABORT_COMMAND

	0x8015
	Error Reg abort command

	EC_DRIVE_ER_SEEK

	0x8016
	Error Reg seek error

	EC_DRIVE_ER_ADDRESS_MARK
	0x8017
	Error Reg Address Mark not found

	EC_CMDQ_TOO_MANY_ENTRY
	0x8018
	CommandQ Too Many Entry

	EC_CMDQ_TAG_NOT_FOUND
	0x8019
	CommandQ Tag not found

	EC_DOWNLOAD_INVALID_FLASH_ID
	0x8020
	Download invalid Flash ID

	EC_DOWNLOAD_DATA_MISCOMPARE
	0x8021
	Download Data Miscompare

	EC_DOWNLOAD_WRONG_MODE
	0x8022
	Download Wrong mode

	EC_DRIVE_BUSY_NOT_CLR
	0x8023
	Drive busy not clear

9.6. Using CUBE
[image: image37.png]HOT
Key

C1F1-Togp1estac) F2-7771 3-Trace F5-opetons] (Fso-hep Ese-Abor s

fig 8-1

(Cube console window)

Assuming Hardware & Software requirement is met, start the CUBE and you will see a screen similar to fig 8-1.
By default, at the CUBE load time, it will load Compat.DRV. Default driver loaded will run on on-board interface connector.

9.6.1. Setting-up test environment by selecting the controller
Before the users of CUBE can exercise the drive, you must setup the controller first. To do this, please follow the following steps (if default driver is not desired):

Step1: scan for the PCI controller card by issuing

> scanpci

// If your card is not found, issue scanallpci command

// See fig 8-2

[image: image38.png]MBE WL HEmmERTOATA L. HE

seript:
scanallpci
Sear ot SUEE
= UNKNGIN Flic=0, S510t=00, 510tAddr=0xG0000000, CardID = 25608086]
- UNKNOWN Fun S1otadd Cardn = 25628086]
- UNKNOWN Fun S1otadd Cardin = 2ac2snsc]
- UNKNOWN Fun S1otadd Cardin = 24c4snsc]
- UNKNOWN Fun S1otadd Cardin = 24cpsnsc]
- ko Fun S1otadd Cardn = 244snsc]
Zicoanae]

(O nmtmlslntm, STotad ardIn
TR tretier o 5

ot thumey T T s Cdpter dous,
S e i Bund Gl o)

B L

o S/S‘DVEu}?(isﬂmmnﬁrleE}

s #2] Lo Siepandied EOMBFORLED oo oramise iz

yar] Promise U133
SRy snnszznn 40531054 (promise U133Tx2) Found

/5108 Func/TnLN = 5:4:3:5] (HAE 1-

£. SThtaddr 60052300 = 4631054 (Promise UL33TH2)

/5108 /Func/TnELN = 5:4:4:5]

£ SThtaddr 60052500 = 4DE305A (Promise UL3ITHE)

/510t Func/TneLn = 5:4:5:5]

£ SThtaddr 60052500 = 4DE305A (Promise UL3ITH2)

/210t Func/TncLn = 5:4:6:5]

£. SThtaddr soos2700 = 4D105A (Promise UL3ITHE)

. UNKNDN Func 510tAddr=0x80054000, CardTo = 10388085]
- UNKNOWN Func=o, 510tAddr=0x80055000, CardId = 13001185]
- UNKNOWN ! STotada Cardio = 1300118¢]
- UNKNOWN ! STotada Cardio = 1300118¢]
- UNKNOWN ! STotada Cardio = 1300118¢]
- UNKNOWN ! STotada Cardio = 1300118¢]
- UNKNOWN ! STotada Cardio = 1300118¢]
- UNKNOWN ! STotada Cardio = 1300118¢]
- UNKNOWN ! STotada Cardio = 13001186]

fig 8-2

(scanning for Controller)

Step2: Load appropriate driver by issuing

> setha(0)

// To load and setup for controller Intel ATA(ICH4)

// See fig 8-3

[image: image39.png]ube v0. 00-VA-INTSATAD. 03"

UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN
UNKNOWN

EOOOFOOT;

seripEs
carazn

/25608086

x20001000] CardIo =f 25628086]
08000E800, CardTD o 24c28085]
Cardro J 2acizoe]
XSODDEFDD] CardIo 5 24cosnsc]
Cardro J 24acsac]

Sraro J zacosose]

Carazo

[ha %3 30ksT0%k (pramise ULzTTR2)
Bus /510t /Func/IntLN = 5 :5])
[4] 25 STOtAddr 80052100 — 4DERi08A (Promise L13ITX2) .
Bus /51 0L /FUNC/INELN. = 5:5:1151 Driver
[4] 25 STOEAGdr 80052200 — 4DERI08A (Promise L13ITX2) isi
Bus /51 0L /FUNC/INELN. = 5:5:2:151 Revision
[Ha #] 25 STOEAddr 80052300 — $DERI05A (Promise L13ITX2)
Bus /51 0L FUne/INELN. = 5:5:3:51
[#3] 25 STotAGdr B0052400 — 4DERI0SA (Promise L13ITX2)
<]
30e3105a (promise v1zITa)
U /2108 FUNE/TNTLN, = 5:5:8151
[Ha 40, —2s SToEAddr B0052600 — 4DERI05A (Promise L13ITX2)
<]
(Promise 133m)
cardzo - 10388085]
Cirazo - 13001156]
Cirazo - 1301ize)
Cirazo - 1301ize)
Cirazo - 1301ize)
Cirazo - 1301ize)
Cirazo - 1301ize)
Cirazo - 1301ize)

STEp 277
odtes00 [base address]
type]

vErname]
3
Host Adaprer Thscalled (1niichdrves

- oone -

briver file

int_ich.drloaded .
aTAL_CnD

S16tAddr=oxa0055700,

Cardio = 13001186]

sECa11]

fig 8-3

(Selecting Controller)

Once the controller is selected and appropriate driver is loaded, the user can now issue commands to drive.
Commands can be issued from the command-line, or you can load pre-written Small-C script and run. To load and run, do the following

· load myscript

// loads script call “myscript”

· run

// If the script was loaded successfully, test will start

9.6.2. CUBE Test Script Examples

9.6.2.1. Sequential Seek Time Measurement:
void DoSequantialSeek();

void main(void)

{

 int counter;

 cwin(5); // Create User defined console window

 id(1); // Issue Identify

 cputs(1,1,"Sequantial Seek Test", 0x20);

 DoSequantialSeek();

}

void DoSequantialSeek()

{

 int c, h;

 int totalTime;

 slba 0;

// Disable LBA addressing mode
 cmdtime 1;

// Enable command time measuring clock
 //--
 //- Do Sequential seek (all cyl, then heads)

 //--
 for(h=0; h<2;h++)
// Head loop
 {

 totalTime=0;

// Initialize totalTime
 for(c=0; c< 1000; c++)
// We will seek from C=0 to 1000
 {

 sk(c, h);

// Seek
 totalTime = totalTime+CMD_TIME;
// Accumulate test time
 }

 cputd(30,h,"SingleTrackSeek: %d microsec", totalTime/c, 0x60);

 }

 return;

}
9.6.2.2. Random Seek Time Measurement:

void DoRandomSeek(int loopCount);
void main(void)

{

 int counter;

 cwin(5); // Create User defined console window

 id(1); // Issue Identify

 cputs(1,1,"Random Seek Time Test", 0x20);

 DoRandomSeek(1000);
// Do 1000 Random seeks
}

void DoRandomSeek(int loopCount)

{

 int c, h;

 int i;

 int totalTime;

 totalTime = 0;

 randomize;

// Randomize
 cmdtime 1;

// Enable the clock(microsecond clock
 slba 1;

 for(i=0;i<loopCount;i++)

 {

 cputd(5,4,"%ld",i, 0x35);
// Show loop count
 rand(R0, 0, MAX_LBA);

// Generate random LBA
 sk(R0, 1);

// Seek
 totalTime=totalTime+CMD_TIME;
// Accumulate the total time
 }

 cputd(30,4,"RandomSeekTime: %d usec", totalTime/loopCount, 0x60);

 return;

}
9.6.2.3. Do Sequential DMA Write/Read:
void main()

{

 int lba;

 int startLBA;

 id(1);

// Identify
 erhlt 1;

// Enable error halt (halt when error occurs
 slba 1;

// Enable LBA addressing mode
 bcmp 1;

// Enable Buffer compare when data is read
 wfill(0x12345678);
// Fill write buffer with pattern 0x12345678
 MAX_LBA = MAX_LBA - 1000;// when id(1) is called, MAX_LBA was set
 startLBA = 0;

 putd("MAX_LBA = %ld", MAX_LBA); newline;

 setf(0x2203);

// Set transfer mode to DMA mode 2
 time;newline;date;newline;
// Time stamp
 for(lba=startLBA; lba < MAX_LBA; lba = lba+255)

 {

 wdma(lba, 0, 0, 255);
// Write DMA
 }

 setf(0x2103);

// Set transfer mode to DMA mode 1
 time;newline;date;newline;
// Time stamp
 for(lba=startLBA; lba < MAX_LBA; lba = lba+255)

 {

 wdma(lba, 0, 0, 255);
// Write DMA
 }

 time;newline;date;newline;
// Time stamp
 for(lba=startLBA; lba < MAX_LBA; lba=lba+255)

 {

 rdma(lba, 0, 0, 255);
// Read DMA – data compare will be

// done since we set the dcmp 1
 }

 time;newline;date;newline;
// Time stamp

 return;
}
9.6.2.4. Do Sequential UDMA Write/Read:

void main()

{

 int lba;

 int startLBA;

 id(1);

// Drive identify
 erhlt 1;

// Enable error halt
 slba 1;

// Enable LBA mode addressing
 wfill(0x12345678);
// Fill Write buffer with pattern 0x12345678
 MAX_LBA = MAX_LBA - 1000;

 startLBA = 0;

 putd("MAX_LBA = %ld", MAX_LBA); newline;

 setf(0x4403);

// Set transfer mode to UDMA mode 4
 time;newline;date;newline;

 for(lba=startLBA; lba < MAX_LBA; lba = lba+255)

 {

 wdma(lba, 0, 0, 255);
// Do UDMA Write
 }

 setf(0x4503);

// Set transfer mode to UDMA mode 5
 time;newline;date;newline;

 for(lba=startLBA; lba < MAX_LBA; lba = lba+255)

 {

 wdma(lba, 0, 0, 255);
// Do UDMA Write
 }

 time;newline;date;newline;

 for(lba=startLBA; lba < MAX_LBA; lba=lba+255)

 {

 rdma(lba, 0, 0, 255);
// Do UDMA Read – do buffer compare

//
since we enabled bcmp 1
 }

 time;newline;date;newline;

 return;

}
9.6.2.5. Legacy Command Queuing:

//===

//= By: Daniel

//=

//= Tag Cmd Queue example using CUBE

//=

//===

void main(void)

{

 int tag1, lba;

 id(0); // Device identify

 trace 1; // Turn on TRACE (for debugging)

 cmdtime 1; // Enable cmd time measurement

 // (to see execution time)

 for (tag1=1; tag1<10;) // for tag ID 1 to 30

 {

 rand(R0, 0, MAX_LBA); // Obtain random LBA

 rdmaq(R0,1,tag1); // Issue ReadCmdQ

 tag1++;

 }

 for (R0=10; R0; R0--)

 {

 delaym(500); // Wait for 500 milliseconds

 checkq; // Check to see whether we have any

 // outstanding cmdq that needs

 // servicing. If so, checkq will

 // service it

 }

 showq; // see if anything is left in the Q

 // If so, it means not all command was serviced

 return;

}

10. VTOOL
10.1. Overview
This is overview of VTOOL Windows version. This document doesn’t explain the whole of VTOOL usage. This just explains how we can run VTOOL inside W-Cube and how we can run each menu.

W-Cube includes Windows version of VTOOL. It’s almost similar to Dos version of VTOOL. When we click “VTOOL” button, VTOOL menu tree will appear inside W-Cube as follows.

[image: image40.png][=lolx|

[) Fle et Vew window Hep IDE Devies VIOOL _18/x]
2 = L))4

CMD BUF HIST STAT INFO VTOOL

* o avaLvsis ~
¥ VIEW/EDIT LIST
- MJC DATA.

) VISUAL TEST

Ready int, Col 1

Before we click “VTOOL” button, we should connect a drive. If not, we can see some kind of error message.
Now we can expand each VTOOL directory as follows.

[image: image41.png]<2 [1] WCUBE - v0.2.7 - [New1]

CMD BUF HIST STAT INFO |VTOOL
* - s

Now we can click “DEFECT” menu, and then we can watch Defect Statistical Chart as follows.

[image: image42.png]208E
208E
208E
208E
208E
208E
208E
208E
208E
208E
208E10
Z0NE11
208E12
208E13
Z0NE14
208E15
20N8E16
208E17
20NE18
20N8E19
208E20
20NE21
20NE22
20NE23
ToTAL

1620

If we want to save this data, just hit F9 key and enter appropriate file name.

[NOTE] We can open multiple lists in Windows 2000, XP at the same time.

But we cannot open multiple lists in Windows 98, ME at the same time.

And if we select “SPAT” menu, we can run SPAT test.

To start test, just click “RUN” button.

[image: image43.png]SPAT
Output

18

Coprure
[POSEIDON 4Ch 7200RPH - ucO6c258]
ax
20 40 60 80 100 120 140 160 180 200 220 240 260 280
4.28 @570.00 Hz
5 1631
59 T1k6,
Average
Haxinun
std rro
Std nrro

Std_tot

—[ol x|
Type Fallowing
Cylinder [100
Head 0
Oftrack [0
Heration [10
I Frra—
Src Head
Interval
#0f Cyl
Mode [wiite
PES/Grid [m000
TraceData [PERR <]
SWRCC [on
FFT A [Tie E
FFT Axis [Ln E

RN EXT

There are two ways of saving a screen.

(1) To save whole test screen.

a. Select the “Capture” menu and select the “Window” sub-menu.

(2) To save the selected area.

a. Drag a mouse to select the area to capture.

b. Select the “Capture” menu and select the “Selection” sub-menu or press “Ctrl+C”.

[NOTE] Now, W-Cube supports jpg, gif, bmp file format. To decide which file format we save a screen as, we just enter appropriate file extension.

10.2. Configuration

Windows VTOOL has some kinds of configuration option. To change them, we can use configuration dialog box. We can find it in a sub-menu of W-Cube.

Here we can change “MC Access Mode”, some kinds of operation option, identify the drive under testing, send reset to it.

[image: image44.png]-MC Access Made MCF File

& DISK /0

© FILE /O

[Frmer
© MCF1/0

Browee.

-Operations

¥ Update RPM automatically

¥ Update servo edge number automatically
¥ Use MCFS

¥ Update model

APM [7200
Servo Edge #

Defautt Model [FOSEDON

(- Drive Infarmation

Options:

¥ Display serial number

Identity Send Reset

Cancel

[NOTE] MC Access Mode

a. DISK I/O

This is default I/O mode. In this mode, VTOOL communicate the drive directly to read M/C data.

b. MCF I/O

 When we select this mode, we need to specify MCF file which was made from “M/C DATA – DISK TO MCF” menu. In this mode, VTOOL communicate the file to read M/C data instead of reading DRIVE directly.

c. FILE I/O

 In this mode, VTOOL use separate files to read M/C data. This mode is for VTOOL debugging.

[NOTE] Windows VTOOL supports MCF file and MCF mode. It’s similar to Dos version MCR file but the file format is different.

10.3. VTOOL API Layer

We can run almost VTOOL functions in W-CUBE command line.
10.3.1. Functions
10.3.1.1. vtoolgetdata : gather specified data and save it into file.
1. Syntax: vtoolgetdata(func, directory_name, file_name);
2. parameters :

a. func : function name in VTOOL menu.
"" to remove the specified file.

b. directory_name : directory name for output file.

"" to use a serial number of connected drive.

c. file_name : output file name.

"" to use a serial number of connected drive.

Using the existing file name, new output will be added to it.

The list of functions which aren’t supported is as follows.

1. All functions under M/C DATA

2. All functions under VISUAL TEST

And VTOOL API layer has following special functions.

a. "GET_DLIST_MAP" : Capture D-List map.

 b. "GET_VLIST_MAP" : Capture V-List map.

 c. "GET_ELOG_MAP" : Capture E-Log map.
 d. “RUN_SPAT” : Run SPAT & capture the screen.

 e. “RUN_TET” : Run TET & capture the screen.

10.3.1.2. vtoolstepmask : select or deselect Burn-in step mask.
1. Syntax:
vtoolstepmask(mode, step);

2. Parameters :

a. mode

0 to select a step

1 to deselect a step

 2 to select all step

 3 to deselect all step

 b. step

 if mode is 0 or 1, this is step to add or remove.
10.3.2. Examples
1. vtoolgetdata("ANALYSIS\DEFECT", "", "_DMAP.TXT");
// Save “ANALYS\DEFECT” into “serialnumber_DMAP.TXT”.

2. vtoolgetdata("ANALYSIS\DEFECT", ".", "");
// “.” means the current directory.

// Save “ANALYSIS\DEFECT” into “serialnumber.txt”
3. vtoolgetdata("GET_ELOG_MAP", "", "ELOG.GIF");
// Before we run this, we should set up all environment such as B/I step mask.

4. SPAT
void main()

{

R0 = 100;
// Cylinder

R1 = 0;
// Head

R2 = 0;
// Offtrack

R3 = 1000;
// Iteration

R4 = 200;
// Src Cyl

R5 = 0;
// Src Head

R6 = 10;
// Interval

R7 = 10;
// # of Cyl

R8 = 0;
// Type : Following(0), Random(1), Indicate(2), Rand Indicate(3), Seq Following(4)

R9 = 1;
// Mode : Read(2), Write(1), Real Write(5)

R10 = 0;
// TraceData : PERR(0), PRAW(1), USER(2)

R11 = 1;
// Srv RCC : OFF(0), ON(1)

R12 = 0;
// FFT Avg : TIME(0), FREQ(1)

R13 = 0;
// FFT Axis : Lin(0), dB(1)

R14 = 0;
// Reserved

R15 = 0;
// Reserved

R16 = 0;
// Reserved

R17 = 0;
// Reserved

R18 = 0;
// Reserved

R19 = 0;
// Reserved

 vtoolgetdata("RUN_SPAT", "", "SPAT.GIF");

return;

}
5. TET

void main()

{

R0 = 100;
// Cylinder

R1 = 0;
// Head

R2 = 1;
// Sector

R3 = 1;
// Step

R4 = 0; // User Retry

R5 = 0;
// HR Retry

R6 = 5;
 // Read #

R7 = 40;
// Max offt

R8 = 130;
// Cell #

R9 = 0;
// ECC

R10 = 0;
// Adjacent Track

R11 = 1;
// DataPtn

R12 = 0;
// Reserved

R13 = 0;
// Reserved

R14 = 0;
// Reserved

R15 = 0;
// Reserved

R16 = 0;
// Reserved

R17 = 0;
// Reserved

R18 = 0;
// Reserved

R19 = 0;
// Reserved

 vtoolgetdata("RUN_TET", "", "TET.GIF");

return;

}
6. Saving all data as separate files in a directory named as serial number.
void main()

{

vtoolstepmask(2, 0);
// select all step.

vtoolgetdata("GET_ELOG_MAP", "", "ELOG.GIF");

vtoolgetdata("GET_VLIST_MAP", "", "VLIST.GIF");

 vtoolgetdata("GET_DLIST_MAP", "", "DLIST.GIF");

 vtoolgetdata("", "", "_DMAP.TXT");
// delete existing output file.
 vtoolgetdata("ANALYSIS\DEFECT", "", "_DMAP.TXT");

 vtoolgetdata("", "", "_RESULT.TXT");

 vtoolgetdata("ANALYSIS\BURN-IN RESULT", "", "_RESULT.TXT");

 vtoolgetdata("", "", "_WHT.TXT");

 vtoolgetdata("ANALYSIS\WEAK HEAD TEST RESULT", "", "_WHT.TXT");

 vtoolgetdata("", "", "_STEPT.TXT");

 vtoolgetdata("ANALYSIS\BURN-IN STEP TIME", "", "_STEPT.TXT");

 vtoolgetdata("", "", "_STEP.TXT");

 vtoolgetdata("ANALYSIS\BURN-IN STEP", "", "_STEP.TXT");

 vtoolgetdata("", "", "_SMART.TXT");

 vtoolgetdata("ANALYSIS\SMART RESULT", "", "_SMART.TXT");

 vtoolgetdata("", "", "_SELOG.TXT");

 vtoolgetdata("ANALYSIS\SMART ERROR LOG", "", "_SELOG.TXT");

 vtoolgetdata("", "", "_MNT.TXT");

 vtoolgetdata("ANALYSIS\PARAMETER MONITORING", "", "_MNT.TXT");

 vtoolgetdata("", "", "_BISCRT.TXT");

 vtoolgetdata("VIEW/EDIT LIST\BURN-IN SCRIPT\VIEW BURNIN SCRIPT", "", "_BISCRT.TXT");

 vtoolgetdata("", "", "_CHNT.TXT");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W CHANNEL TABLE", "", "_CHNT.TXT");

 vtoolgetdata("", "", "_MATRIX.TXT");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W CHANNEL MATRIX", "", "_MATRIX.TXT");

 vtoolgetdata("", "", "_PMP.TXT");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W PREAMP VALUES", "", "_PMP.TXT");

 vtoolgetdata("", "", "_CHNV.TXT");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W CHANNEL VALUES", "", "_CHNV.TXT");

 vtoolgetdata("", "", "_FIRV.TXT");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W FIR VALUES", "", "_FIRV.TXT");

 vtoolgetdata("", "", "_SERR.TXT");

 vtoolgetdata("VIEW/EDIT LIST\SORTED ERROR LOG", "", "_SERR.TXT");

 vtoolgetdata("", "", "_SERVO.TXT");

 vtoolgetdata("VIEW/EDIT LIST\SERVO INFORMATION", "", "_SERVO.TXT");

 vtoolgetdata("", "", "_DSBER.TXT");

 vtoolgetdata("VIEW/EDIT LIST\ERROR RATE TEST RESULT\Zone Error Rates (First)", "", "_DSBER.TXT");

 vtoolgetdata("", "", "_2NDBER.TXT");

 vtoolgetdata("VIEW/EDIT LIST\ERROR RATE TEST RESULT\Zone Error Rates (Second)", "", "_2NDBER.TXT");

 vtoolgetdata("", "", "_10SBER.TXT");

 vtoolgetdata("VIEW/EDIT LIST\ERROR RATE TEST RESULT\Zone Error Rates (Third)", "", "_10SBER.TXT");

 vtoolgetdata("", "", "_MRTUNE.TXT");

 vtoolgetdata("VIEW/EDIT LIST\MR TUNE LOG DATA", "", "_MRTUNE.TXT");

 vtoolgetdata("", "", "_747TPI.TXT");

 vtoolgetdata("VIEW/EDIT LIST\VIEW TPI 747 RESULT\TPI LOG from [TPI_WRW]", "", "_747TPI.TXT");

 vtoolgetdata("", "", "_BPICSM.TXT");

 vtoolgetdata("VIEW/EDIT LIST\BPI RESULT\BPI CSM RESULT", "", "_BPICSM.TXT");

 vtoolgetdata("", "", "_GEOM.TXT");

 vtoolgetdata("VIEW/EDIT LIST\CURRENT GEOMETRY", "", "_GEOM.TXT");

 vtoolgetdata("", "", "_NPV.TXT");

 vtoolgetdata("VIEW/EDIT LIST\NPV TEST", "", "_NPV.TXT");

 vtoolgetdata("", "", "_SPIKE.TXT");

 vtoolgetdata("VIEW/EDIT LIST\AMPLITUDE SPIKE TEST", "", "_SPIKE.TXT");

 vtoolgetdata("", "", "_SDLST.TXT");

 vtoolgetdata("VIEW/EDIT LIST\SERVO DEFECT LIST", "", "_SDLST.TXT");

 vtoolgetdata("", "", "_TDLST.TXT");

 vtoolgetdata("VIEW/EDIT LIST\TRACK DEFECT LIST", "", "_TDLST.TXT");

 vtoolgetdata("", "", "_DLIST.TXT");

vtoolgetdata("VIEW/EDIT LIST\PRIMARY DEFECT LIST", "", "_DLIST.TXT");

 vtoolgetdata("", "", "_ARLIST.TXT");

 vtoolgetdata("VIEW/EDIT LIST\AUTO REASSIGN LIST", "", "_ARLIST.TXT");

 vtoolgetdata("", "", "_TA.TXT");

 vtoolgetdata("VIEW/EDIT LIST\TA DEFECT LIST", "", "_TA.TXT");

 vtoolgetdata("", "", "_SN.TXT");

 vtoolgetdata("VIEW/EDIT LIST\DRIVE SERIAL NUMBER", "", "_SN.TXT");

}
Example script 2) Saving all data as a file named as serial number.

void main()

{

 vtoolgetdata("", ".", "");

// delete existing output file.
 vtoolgetdata("ANALYSIS\DEFECT", ".", "");

 vtoolgetdata("ANALYSIS\BURN-IN RESULT", ".", "");

 vtoolgetdata("ANALYSIS\WEAK HEAD TEST RESULT", ".", "");

 vtoolgetdata("ANALYSIS\BURN-IN STEP TIME", ".", "");

 vtoolgetdata("ANALYSIS\BURN-IN STEP", ".", "");

 vtoolgetdata("ANALYSIS\SMART RESULT", ".", "");

 vtoolgetdata("ANALYSIS\SMART ERROR LOG", ".", "");

 vtoolgetdata("ANALYSIS\PARAMETER MONITORING", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\BURN-IN SCRIPT\VIEW BURNIN SCRIPT", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W CHANNEL TABLE", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W CHANNEL MATRIX", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W PREAMP VALUES", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W CHANNEL VALUES", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\R/W CHANNEL MENU\CHANNEL TABLE 1 [CHN_TBL]\R/W FIR VALUES", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\SORTED ERROR LOG", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\SERVO INFORMATION", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\ERROR RATE TEST RESULT\Zone Error Rates (First)", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\ERROR RATE TEST RESULT\Zone Error Rates (Second)", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\ERROR RATE TEST RESULT\Zone Error Rates (Third)", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\MR TUNE LOG DATA", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\VIEW TPI 747 RESULT\TPI LOG from [TPI_WRW]", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\BPI RESULT\BPI CSM RESULT", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\CURRENT GEOMETRY", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\NPV TEST", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\AMPLITUDE SPIKE TEST", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\SERVO DEFECT LIST", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\TRACK DEFECT LIST", ".", "");

vtoolgetdata("VIEW/EDIT LIST\PRIMARY DEFECT LIST", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\AUTO REASSIGN LIST", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\TA DEFECT LIST", ".", "");

 vtoolgetdata("VIEW/EDIT LIST\DRIVE SERIAL NUMBER", ".", "");

 vtoolgetdata("GET_DLIST_MAP", "", "DLIST.GIF");

 vtoolgetdata("GET_VLIST_MAP", "", "VLIST.GIF");

 vtoolgetdata("GET_ELOG_MAP", "", "ELOG.GIF");

}
---------------------------------end of file--------------------------------------
� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

 2.

3.

why not!
63
CCC - dkim

[image: image48.emf]Start

Do Stuff

Are we done?

(expression)

Continue with

other things

Done

No

Yes

_1121774434.vsd

_1160321383.vsd

_1121774282.vsd

